main driver
Recently Published Documents


TOTAL DOCUMENTS

1167
(FIVE YEARS 693)

H-INDEX

37
(FIVE YEARS 11)

Author(s):  
Shruti Sunil Ajankar ◽  
Aditi Rajesh Nimodiya

Artificial intelligence (AI) is one of the most important technologies in the world today. In the future, intelligent machines will replace or enhance human capabilities in many areas. Artificial Intelligence is impacting the future of virtually every industry and every human being. AI has acted as the main driver of emerging technologies like big data, robotics, and IoT, and it will continue to act as a technological innovator for the foreseeable future. AI is simply the study of how to make computer do things which at the moment people do the better. There are many ways to define AI, but one simple definition is “intelligence demonstrated by machines”. Primary goal of AI is to improve computer behaviour so that it can be called intelligent. AI is ubiquitous and is not only limited to computer science but has evolved to include other areas like health, security, education, music, art, and business application. This paper gives an overview of how the AI actually works, its scopes , the different applications of AI, its advantages and disadvantages and many more topics which will give a clear understanding inspite of the boundlessness of AI.


2022 ◽  
Vol 19 (1) ◽  
pp. 223-239
Author(s):  
Rémy Asselot ◽  
Frank Lunkeit ◽  
Philip B. Holden ◽  
Inga Hense

Abstract. We investigate the ways in which marine biologically mediated heating increases the surface atmospheric temperature. While the effects of phytoplankton light absorption on the ocean have gained attention over the past years, the impact of this biogeophysical mechanism on the atmosphere is still unclear. Phytoplankton light absorption warms the surface of the ocean, which in turn affects the air–sea heat and CO2 exchanges. However, the contribution of air–sea heat versus CO2 fluxes in the phytoplankton-induced atmospheric warming has not been yet determined. Different so-called climate pathways are involved. We distinguish heat exchange, CO2 exchange, dissolved CO2, solubility of CO2 and sea-ice-covered area. To shed more light on this subject, we employ the EcoGEnIE Earth system model that includes a new light penetration scheme and isolate the effects of individual fluxes. Our results indicate that phytoplankton-induced changes in air–sea CO2 exchange warm the atmosphere by 0.71 ∘C due to higher greenhouse gas concentrations. The phytoplankton-induced changes in air–sea heat exchange cool the atmosphere by 0.02 ∘C due to a larger amount of outgoing longwave radiation. Overall, the enhanced air–sea CO2 exchange due to phytoplankton light absorption is the main driver in the biologically induced atmospheric heating.


2022 ◽  
Vol 10 (1) ◽  
pp. 146
Author(s):  
Stefan Panaiotov ◽  
Dzheni Madzharov ◽  
Yordan Hodzhev

Bulgaria is among the 18 high-priority countries of the WHO European Region with high rates of tuberculosis. The causative agent of tuberculosis is thought to have emerged in Africa 70,000 years ago, or during the Neolithic age, and colonized the world through human migrations. The established main lineages of tuberculosis correlate highly with geography. The goal of our study was to investigate the biodiversity of Mycobacterium tuberculosis in Bulgaria in association with human migration history during the last 10 centuries. We analyzed spoligotypes and MIRU-VNTR genotyping data of 655 drug-sensitive and 385 multidrug-resistant M. tuberculosis strains collected in Bulgaria from 2008 to 2018. We assigned the genotype of all isolates using SITVITWEB and MIRU-VNTRplus databases and software. We investigated the major well-documented historical events of immigration to Bulgaria that occurred during the last millennium. Genetic profiles demonstrated that, with the exceptions of 3 strains of Mycobacterium bovis and 18 strains of Lineage 2 (W/Beijing spoligotype), only Lineage 4 (Euro-American) was widely diffused in Bulgaria. Analysis of well-documented immigrations of Roma from the Indian subcontinent during the 10th to the 12th centuries, Turkic peoples from Central Asia in the medieval centuries, and more recently Armenians, Russians, and Africans in the 20th century influenced the biodiversity of M. tuberculosis in Bulgaria but only with genotypes of sublineages within the L4. We hypothesize that these sublineages were more virulent, or that ecological adaptation of imported M. tuberculosis genotypes was the main driver contributing to the current genetic biodiversity of M. tuberculosis in Bulgaria. We also hypothesize that some yet unknown local environmental factors may have been decisive in the success of imported genotypes. The ecological factors leading to local genetic biodiversity in M. tuberculosis are multifactorial and have not yet been fully clarified. The coevolution of long-lasting pathogen hosts should be studied, taking into account environmental and ecological changes.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Jan Laštovička

There is not only space weather; there is also space climate. Space climate includes the ionospheric climate, which is affected by long-term trends in the ionosphere. One of the most important ionospheric parameters is the critical frequency of the ionospheric F2 layer, foF2, which corresponds to the maximum ionospheric electron density, NmF2. Observational data series of foF2 have been collected at some stations for as long as over 60 years and continents are relatively well covered by a network of ionosondes, instruments that measure, among others, foF2. Trends in foF2 are relatively weak. The main global driver of long-term trends in foF2 is the increasing concentration of greenhouse gases, namely CO2, in the atmosphere. The impact of the other important trend driver, the secular change in the Earth’s main magnetic field, is very regional, being positive in some regions, negative in others, and neither in the rest. There are various sources of uncertainty in foF2 trends. One is the inhomogeneity of long foF2 data series. The main driver of year-to-year changes in foF2 is the quasi-eleven-year solar cycle. The removal of its effect is another source of uncertainty. Different methods might provide somewhat different strengths among trends in foF2. All this is briefly reviewed in the paper.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Silke Claus ◽  
Sylwia Jezierska ◽  
Liam D. H. Elbourne ◽  
Inge Van Bogaert

AbstractStarmerella bombicola is a non-conventional yeast mainly known for its capacity to produce high amounts of the glycolipids ‘sophorolipids’. Although its product has been used as biological detergent for a couple of decades, the genetics of S. bombicola are still largely unknown. Computational analysis of the yeast’s genome enabled us to identify 254 putative transporter genes that make up the entire transportome. For each of them, a potential substrate was predicted using homology analysis, subcellular localization prediction and RNA sequencing in different stages of growth. One transporter family is of exceptional importance to this yeast: the ATP Binding Cassette (ABC) transporter Superfamily, because it harbors the main driver behind the highly efficient sophorolipid export. Furthermore, members of this superfamily translocate a variety of compounds ranging from antibiotics to hydrophobic molecules. We conducted an analysis of this family by creating deletion mutants to understand their role in the export of hydrophobic compounds, antibiotics and sophorolipids. Doing this, we could experimentally confirm the transporters participating in the efflux of medium chain fatty alcohols, particularly decanol and undecanol, and identify a second sophorolipid transporter that is located outside the sophorolipid biosynthetic gene cluster.


2022 ◽  
Author(s):  
Alexa Pichet Binette ◽  
Nicolai Franzmeier ◽  
Nicola Spotorno ◽  
Michael Ewers ◽  
Matthias Brendel ◽  
...  

For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, it is important to understand how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with PET and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. In early stages of AD, increased concentration of soluble CSF p-tau was the main driver of accumulation of insoluble tau aggregates across the brain, and mediated the effect of Aβ on tau aggregation. Further, higher soluble p-tau concentrations were mainly related to faster accumulation of tau aggregates in the regions with strong functional connectivity to individual tau epicenters. In this early stage, higher soluble p-tau concentrations were associated with cognitive decline, which was mediated by faster increase of tau aggregates. In AD dementia, when Aβ fibrils and soluble p-tau levels have plateaued, cognitive decline was driven by the accumulation rate of insoluble tau aggregates. Our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD.


Author(s):  
Mohamad Karam ◽  
Ismat Ghanem ◽  
Claudio Vergari ◽  
Nour Khalil ◽  
Maria Saadé ◽  
...  

Author(s):  
Alexey Tikhonov

Until recently, the high rates of aircraft engine engineering’s development were ensured by the technological solutions improvement and the desire to approximate as much as possible the ideal thermodynamic cycle of turbojet engines. The traditional fuel for turbojet engines is an aviation kerosene – Jet-A fuel group and their regional analogies. The traditional way of aircraft engines efficiency increasing is a raising of a temperature in front of the high-pressure turbine. New alloys and technologies allow to increase the aircraft engines efficiency to a certain level. Raising the temperature in the combustion chamber by 50 degrees increases the efficiency, which leads to a 5% reduction in fuel consumption. However, this approach is technology limited and does not provide innovative solutions. The aircraft engine engineering’s development tempo in the 21st century continues to accelerate. The main driver of such processes in recent years is the tightening of economic and environmental requirements. Many aircraft manufacturers are actively looking for ways to reach a new qualitative level in terms of turbojet engines economic efficiency and meeting strict environmental requirements. The paper considers the feasibility of using new cryogenic fuels in aircraft turbojet engines, and possible ways for aircraft industry successful development.


2022 ◽  
Author(s):  
Mathilde Poplineau ◽  
Nadine Platet ◽  
Adrien Mazuel ◽  
Leonard Herault ◽  
Shuhei Koide ◽  
...  

Cancer relapse is caused by a subset of malignant cells that are resistant to treatment. To characterize resistant cells and their vulnerabilities, we studied the retinoic acid (RA)-resistant PLZF-RARA acute promyelocytic leukemia (APL) using single-cell multi-omics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells and identified a subset of cells resistant to RA that depend on a fine-tuned transcriptional network targeting the epigenetic regulator Enhancer of Zeste Homolog 2 (EZH2). Epigenomic and functional analyses validated EZH2 selective dependency of PLZF-RARA leukemia and its driver role in RA resistance. Targeting pan-EZH2 activities (canonical/non-canonical) was necessary to eliminate leukemia relapse initiating cells, which underlies a dependency of resistant cells on an EZH2 non-canonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach.


2022 ◽  
Vol 12 ◽  
pp. 100298
Author(s):  
Günter Kampf
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document