scholarly journals Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu)

2011 ◽  
Vol 108 (32) ◽  
pp. 13019-13022 ◽  
Author(s):  
Valérie Ballu ◽  
Marie-Noëlle Bouin ◽  
Patricia Siméoni ◽  
Wayne C. Crawford ◽  
Stephane Calmant ◽  
...  
Author(s):  
William George Bennett ◽  
Harshinie Karunarathna

Purpose Coastal flooding has disastrous consequences on people, infrastructure, properties and the environment. Increasing flood risk as a result of global climate change is a significant concern both within the UK and globally. To counter any potential increase in future flooding, a range of potential management options are being considered. This study aims to explore future coastal management practice for flood alleviation, incorporating the influence of climate change. Design/methodology/approach The Taf estuary in South West Wales, a macro-tidal estuary which has a history of coastal flooding, was chosen as the case study in this paper to investigate the impact of coastal management interventions such as construction of hard defences, managed realignment or altering land use of affiliated ecosystems such as salt marshes on the complex hydrodynamics and hence flooding of the surrounding areas of the estuary. The study was carried out using a numerical hydrodynamic model of the Taf estuary, developed using the process-based Delft3D modelling software. Findings The role of the selected management interventions on coastal flooding was investigated using an extreme storm condition, both with and without the impact of future sea level rise. The results highlight the scale of the effect of sea level rise, with the selected management interventions revealing that minimising the increase in flooding in future requires careful consideration of the available options. Originality/value This paper explores the highlighted role of coastal management practice in future with the influence of climate change to study how effective alternative methods can be for flood alleviation.


2019 ◽  
Author(s):  
G. Lynn Wingard ◽  
◽  
Miriam C. Jones ◽  
Sarah E. Bergstresser ◽  
Bethany L. Stackhouse ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0118571 ◽  
Author(s):  
Barbara Neumann ◽  
Athanasios T. Vafeidis ◽  
Juliane Zimmermann ◽  
Robert J. Nicholls

2019 ◽  
Vol 653 ◽  
pp. 1522-1531 ◽  
Author(s):  
Rafael J. Bergillos ◽  
Cristobal Rodriguez-Delgado ◽  
Gregorio Iglesias

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3090
Author(s):  
Sergio B. Jiménez-Hernández ◽  
Ofelia Pérez Montero ◽  
Eustorgio Meza ◽  
Yunior R. Velázquez ◽  
Juan R. Castellanos ◽  
...  

This paper presents a coastal migration index (CMI) useful for decision-making in the current scenario of sea-level rise (SLR) due to climate change. The CMI includes coastal human population density, degree of urbanization, and coastal-flooding penetration. Quantitative and qualitative statistical techniques and the geographic information system ArcGIS View 9.0 were used. Further, a panel of fifteen international experts in coastal management issues was consulted to establish and validate the CMI. Results led to three index components based on 22 indicators. CMI was applied in the state of Tamaulipas, Mexico and in Santiago de Cuba province, Cuba. According to CMI estimates, the risk levels associated with SLR for human settlements analyzed in Mexico and Cuba were 5.3% and 11.0%, respectively. The most severely affected communities will require resettlement. Meanwhile, the CMI determined that 15.8% of the Mexican territory studied will be able to withstand the effects of SLR through the management of engineering works that will protect human settlements. The CMI determined that 79.0%, in the case of Tamaulipas, as well as 89.0% of the Cuban territory, will not require new policies or guidelines to promote conservation and protection of coastal natural resources. Lastly, the method used allowed for creation of a CMI stoplight map useful to coastal decision-makers to adopt sound management actions.


Sign in / Sign up

Export Citation Format

Share Document