scholarly journals Revealing the mechanism of how cardiac myosin-binding protein C N-terminal fragments sensitize thin filaments for myosin binding

2019 ◽  
Vol 116 (14) ◽  
pp. 6828-6835 ◽  
Author(s):  
Alessio V. Inchingolo ◽  
Samantha Beck Previs ◽  
Michael J. Previs ◽  
David M. Warshaw ◽  
Neil M. Kad

Cardiac muscle contraction is triggered by calcium binding to troponin. The consequent movement of tropomyosin permits myosin binding to actin, generating force. Cardiac myosin-binding protein C (cMyBP-C) plays a modulatory role in this activation process. One potential mechanism for the N-terminal domains of cMyBP-C to achieve this is by binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently labeled cMyBP-C N-terminal fragments and GFP-labeled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single-molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound in clusters, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that involves a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium, thus enhancing myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility.

2018 ◽  
Author(s):  
Alessio V. Inchingolo ◽  
Samantha Beck Previs ◽  
Michael J. Previs ◽  
David M. Warshaw ◽  
Neil M. Kad

AbstractCardiac muscle contraction is activated by calcium binding to troponin and the consequent motion of tropomyosin on actin within the sarcomere. These movements permit myosin binding, filament sliding and motion generation. One potential mechanism by which the N-terminal domains of cardiac myosin-binding protein C (cMyBP-C) play a modulatory role in this activation process is by cMyBP-C binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently-labelled cMyBP-C N-terminal fragments and GFP-labelled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound cooperatively, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that utilizes a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium and thus, enhance myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility.


Structure ◽  
2018 ◽  
Vol 26 (12) ◽  
pp. 1604-1611.e4 ◽  
Author(s):  
Cristina Risi ◽  
Betty Belknap ◽  
Eva Forgacs-Lonart ◽  
Samantha P. Harris ◽  
Gunnar F. Schröder ◽  
...  

2019 ◽  
Vol 116 (31) ◽  
pp. 15485-15494 ◽  
Author(s):  
Saraswathi Ponnam ◽  
Ivanka Sevrieva ◽  
Yin-Biao Sun ◽  
Malcolm Irving ◽  
Thomas Kampourakis

The heart’s response to varying demands of the body is regulated by signaling pathways that activate protein kinases which phosphorylate sarcomeric proteins. Although phosphorylation of cardiac myosin binding protein-C (cMyBP-C) has been recognized as a key regulator of myocardial contractility, little is known about its mechanism of action. Here, we used protein kinase A (PKA) and Cε (PKCε), as well as ribosomal S6 kinase II (RSK2), which have different specificities for cMyBP-C’s multiple phosphorylation sites, to show that individual sites are not independent, and that phosphorylation of cMyBP-C is controlled by positive and negative regulatory coupling between those sites. PKA phosphorylation of cMyBP-C’s N terminus on 3 conserved serine residues is hierarchical and antagonizes phosphorylation by PKCε, and vice versa. In contrast, RSK2 phosphorylation of cMyBP-C accelerates PKA phosphorylation. We used cMyBP-C’s regulatory N-terminal domains in defined phosphorylation states for protein–protein interaction studies with isolated cardiac native thin filaments and the S2 domain of cardiac myosin to show that site-specific phosphorylation of this region of cMyBP-C controls its interaction with both the actin-containing thin and myosin-containing thick filaments. We also used fluorescence probes on the myosin-associated regulatory light chain in the thick filaments and on troponin C in the thin filaments to monitor structural changes in the myofilaments of intact heart muscle cells associated with activation of myocardial contraction by the N-terminal region of cMyBP-C in its different phosphorylation states. Our results suggest that cMyBP-C acts as a sarcomeric integrator of multiple signaling pathways that determines downstream physiological function.


2014 ◽  
Vol 466 (3) ◽  
pp. 425-431 ◽  
Author(s):  
Roger Craig ◽  
Kyoung Hwan Lee ◽  
Ji Young Mun ◽  
Iratxe Torre ◽  
Pradeep K. Luther

Sign in / Sign up

Export Citation Format

Share Document