thick filaments
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 35)

H-INDEX

54
(FIVE YEARS 3)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Dominik Sziklai ◽  
Judit Sallai ◽  
Zsombor Papp ◽  
Dalma Kellermayer ◽  
Zsolt Mártonfalvi ◽  
...  

Titin is a multifunctional filamentous protein anchored in the M-band, a hexagonally organized supramolecular lattice in the middle of the muscle sarcomere. Functionally, the M-band is a framework that cross-links myosin thick filaments, organizes associated proteins, and maintains sarcomeric symmetry via its structural and putative mechanical properties. Part of the M-band appears at the C-terminal end of isolated titin molecules in the form of a globular head, named here the “M-complex”, which also serves as the point of head-to-head attachment of titin. We used high-resolution atomic force microscopy and nanosurgical manipulation to investigate the topographical and internal structure and local mechanical properties of the M-complex and its associated titin molecules. We find that the M-complex is a stable structure that corresponds to the transverse unit of the M-band organized around the myosin thick filament. M-complexes may be interlinked into an M-complex array that reflects the local structural and mechanical status of the transversal M-band lattice. Local segments of titin and the M-complex could be nanosurgically manipulated to achieve extension and domain unfolding. Long threads could be pulled out of the M-complex, suggesting that it is a compact supramolecular reservoir of extensible filaments. Nanosurgery evoked an unexpected volume increment in the M-complex, which may be related to its function as a mechanical spacer. The M-complex thus displays both elastic and plastic properties which support the idea that the M-band may be involved in mechanical functions within the muscle sarcomere.


2021 ◽  
Vol 154 (1) ◽  
Author(s):  
Roger Craig ◽  
Raúl Padrón

Super-relaxation is a state of muscle thick filaments in which ATP turnover by myosin is much slower than that of myosin II in solution. This inhibited state, in equilibrium with a faster (relaxed) state, is ubiquitous and thought to be fundamental to muscle function, acting as a mechanism for switching off energy-consuming myosin motors when they are not being used. The structural basis of super-relaxation is usually taken to be a motif formed by myosin in which the two heads interact with each other and with the proximal tail forming an interacting-heads motif, which switches the heads off. However, recent studies show that even isolated myosin heads can exhibit this slow rate. Here, we review the role of head interactions in creating the super-relaxed state and show how increased numbers of interactions in thick filaments underlie the high levels of super-relaxation found in intact muscle. We suggest how a third, even more inhibited, state of myosin (a hyper-relaxed state) seen in certain species results from additional interactions involving the heads. We speculate on the relationship between animal lifestyle and level of super-relaxation in different species and on the mechanism of formation of the super-relaxed state. We also review how super-relaxed thick filaments are activated and how the super-relaxed state is modulated in healthy and diseased muscles.


2021 ◽  
Vol 153 (11) ◽  
Author(s):  
Massimo Reconditi ◽  
Elisabetta Brunello ◽  
Luca Fusi ◽  
Marco Linari ◽  
Vincenzo Lombardi ◽  
...  

The myosin motors in resting skeletal muscle are folded back against their tails in the thick filament in a conformation that makes them unavailable for binding to actin. When muscles are activated, calcium binding to troponin leads to a rapid change in the structure of the actin-containing thin filaments that uncovers the myosin binding sites on actin. Almost as quickly, myosin motors leave the folded state and move away from the surface of the thick filament. To test whether motor unfolding is triggered by the availability of nearby actin binding sites, we measured changes in the x-ray reflections that report motor conformation when muscles are activated at longer sarcomere length, so that part of the thick filaments no longer overlaps with thin filaments. We found that the intensity of the M3 reflection from the axial repeat of the motors along the thick filaments declines almost linearly with increasing sarcomere length up to 2.8 µm, as expected if motors in the nonoverlap zone had left the folded state and become relatively disordered. In a recent article in JGP, Squire and Knupp challenged this interpretation of the data. We show here that their analysis is based on an incorrect assumption about how the interference subpeaks of the M3 reflection were reported in our previous paper. We extend previous models of mass distribution along the filaments to show that the sarcomere length dependence of the M3 reflection is consistent with <10% of no-overlap motors remaining in the folded conformation during active contraction, confirming our previous conclusion that unfolding of myosin motors on muscle activation is not due to the availability of local actin binding sites.


2021 ◽  
Author(s):  
Agata A Mossakowski ◽  
Henning T Langer ◽  
Alec Bizieff ◽  
Alec M Avey ◽  
Hermann Zbinden-Foncea ◽  
...  

Desminopathy the most common intermediate filament disease in humans. Desmin is an essential part of the filamentous network that aligns myofibrils, anchors nuclei and mitochondria, and connects the z-discs and the sarcolemma. We created a rat model with a mutation in R349P DES, analog to the most frequent R350P DES missense mutation in humans. To examine the effects of a chronic, physiological exercise stimulus on desminopathic muscle, we subjected R349P DES rats and their wildtype (WT) and heterozygous littermates to a treadmill running regime. We saw significantly lower running capacity in DES rats that worsened over the course of the study. We found indicators of increased autophagic and proteasome activity with running in DES compared to WT. Stable isotope labeling and LC-MS analysis displayed distinct adaptations of the proteomes of WT and DES animals at baseline as well as with exercise: While key proteins of glycolysis, mitochondria and thick filaments increased their synthetic activity with running in WT, these proteins were higher at baseline in DES and did not change with running. The results suggest an impairment in adaption to chronic exercise in DES muscle and a subsequent exacerbation in the functional and histopathological phenotype.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Mei Methawasin ◽  
Gerrie P Farman ◽  
Shawtarohgn Granzier-Nakajima ◽  
Joshua G Strom ◽  
John E Smith ◽  
...  

Titin’s C-zone is the inextensible part of titin that binds along the thick filament at its cMyBP-C -containing region. Previously it was shown that deletion of titin’s super-repeats C1 and C2 ( Ttn ΔC1-2 mouse model) results in shorter thick filaments and contractile dysfunction, but LV chamber stiffness is normal. Here we studied the contraction-relaxation kinetics from the time-varying elastance of the left ventricle (LV) and from cellular work loops of intact loaded cardiac myocytes. Ca 2+ transients were also measured as well as crossbridge cycling kinetics and Ca 2+ sensitivity of force. It was found that intact cardiomyocytes of Ttn ΔC1-2 mice exhibit systolic dysfunction and impaired relaxation. The time-varying elastance of the LV chamber showed that the kinetics of LV activation are normal but that relaxation is slower in Ttn ΔC1-2 mice. The slowed relaxation was, in part, attributable to an increased myofilament Ca 2+ sensitivity and slower early Ca 2+ reuptake. Dynamic stiffness at the myofilament level showed that cross-bridge kinetics are normal, but that the number of force-generating cross-bridges is reduced. In vivo sarcomere length (SL) measurements in the mid-wall region of the LV revealed that the operating SL range is shifted in Ttn ΔC1-2 mice towards shorter lengths. This normalizes the apparent cell and LV chamber stiffness but reduces the number of force generating cross-bridges due to suboptimal thin and thick filament overlap. Thus the contractile dysfunction in Ttn ΔC1-2 mice is not only due to shorter thick filaments but also to a reduced operating sarcomere length range. Overall these results reveal that for normal cardiac function, thick filament length regulation by titin’s C-zone is critical.


2021 ◽  
Vol 118 (14) ◽  
pp. e2024151118
Author(s):  
Hamidreza Rahmani ◽  
Wen Ma ◽  
Zhongjun Hu ◽  
Nadia Daneshparvar ◽  
Dianne W. Taylor ◽  
...  

The atomic structure of the complete myosin tail within thick filaments isolated from Lethocerus indicus flight muscle is described and compared to crystal structures of recombinant, human cardiac myosin tail segments. Overall, the agreement is good with three exceptions: the proximal S2, in which the filament has heads attached but the crystal structure doesn’t, and skip regions 2 and 4. At the head–tail junction, the tail α-helices are asymmetrically structured encompassing well-defined unfolding of 12 residues for one myosin tail, ∼4 residues of the other, and different degrees of α-helix unwinding for both tail α-helices, thereby providing an atomic resolution description of coiled-coil “uncoiling” at the head–tail junction. Asymmetry is observed in the nonhelical C termini; one C-terminal segment is intercalated between ribbons of myosin tails, the other apparently terminating at Skip 4 of another myosin tail. Between skip residues, crystal and filament structures agree well. Skips 1 and 3 also agree well and show the expected α-helix unwinding and coiled-coil untwisting in response to skip residue insertion. Skips 2 and 4 are different. Skip 2 is accommodated in an unusual manner through an increase in α-helix radius and corresponding reduction in rise/residue. Skip 4 remains helical in one chain, with the other chain unfolded, apparently influenced by the acidic myosin C terminus. The atomic model may shed some light on thick filament mechanosensing and is a step in understanding the complex roles that thick filaments of all species undergo during muscle contraction.


2021 ◽  
Vol 10 (4) ◽  
pp. 614 ◽  
Author(s):  
Nobuto Nakanishi ◽  
Rie Tsutsumi ◽  
Kanako Hara ◽  
Masafumi Matsuo ◽  
Hiroshi Sakaue ◽  
...  

Titin is a giant protein that functions as a molecular spring in sarcomeres. Titin interconnects the contraction of actin-containing thin filaments and myosin-containing thick filaments. Titin breaks down to form urinary titin N-fragments, which are measurable in urine. Urinary titin N-fragment was originally reported to be a useful biomarker in the diagnosis of muscle dystrophy. Recently, the urinary titin N-fragment has been increasingly gaining attention as a novel biomarker of muscle atrophy and intensive care unit-acquired weakness in critically ill patients, in whom titin loss is a possible pathophysiology. Furthermore, several studies have reported that the urinary titin N-fragment also reflected muscle atrophy and weakness in patients with chronic illnesses. It may be used to predict the risk of post-intensive care syndrome or to monitor patients’ condition after hospital discharge for better nutritional and rehabilitation management. We provide several tips on the use of this promising biomarker in post-intensive care syndrome.


2021 ◽  
Vol 134 (6) ◽  
pp. jcs256156
Author(s):  
Rafael Kronenberg-Tenga ◽  
Meltem Tatli ◽  
Matthias Eibauer ◽  
Wei Wu ◽  
Ji-Yeon Shin ◽  
...  

ABSTRACTThe LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from LmnaH222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in LmnaH222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Thomas Irving ◽  
Roger Craig ◽  
Raúl Padrón

Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation–based ATP energy-saving mechanism in the range of 8.5–40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.


2021 ◽  
Author(s):  
Clarence E Schutt ◽  
Vladimir Gelfand ◽  
Eli Paster

AbstractThe unit underlying the construction and functioning of muscle fibers is the sarcomere. Tension develops in fibers as thousands of sarcomeres arranged in series contract in unison. Shortening is due to the sliding of actin thin filaments along antiparallel arrays of myosin thick filaments. Remarkably, myosin catalytic heads situated across the center M-line of a sarcomere are separated by a distance that is a half integral of the 14.5 nm spacing between successive layers of myosin heads on the thick filaments. This results in the splitting of the 14.5 nm meridional reflection in X-ray diffraction patterns of muscle fibers. Following a quick drop in tension, changes in the relative intensities of the split meridional peaks provide a sensitive measure of myosin head movements. We use published data obtained with the x-ray interference method to validate a theory of muscle contraction in which cooperative structural transitions along force-generating actin filaments regulate the binding of myosin heads. The probability that an actin-bound myosin head will detach is represented here by a statistical function that yields a length-tension curve consistent with classical descriptions of the recovery of contracting muscle fibers subjected to millisecond drops in tension.


Sign in / Sign up

Export Citation Format

Share Document