scholarly journals In vivo evidence for dysregulation of mGluR5 as a biomarker of suicidal ideation

2019 ◽  
Vol 116 (23) ◽  
pp. 11490-11495 ◽  
Author(s):  
Margaret T. Davis ◽  
Ansel Hillmer ◽  
Sophie E. Holmes ◽  
Robert H. Pietrzak ◽  
Nicole DellaGioia ◽  
...  

Recent evidence implicates dysregulation of metabotropic glutamatergic receptor 5 (mGluR5) in pathophysiology of PTSD and suicidality. Using positron emission tomography and [18F]FPEB, we quantified mGluR5 availability in vivo in individuals with PTSD (n = 29) and MDD (n = 29) as a function of suicidal ideation (SI) to compare with that of healthy comparison controls (HC; n = 29). Volume of distribution was computed using a venous input function in the five key frontal and limbic brain regions. We observed significantly higher mGluR5 availability in PTSD compared with HC individuals in all regions of interest (P’s = 0.001–0.01) and compared with MDD individuals in three regions (P’s = 0.007). mGluR5 availability was not significantly different between MDD and HC individuals (P = 0.17). Importantly, we observed an up-regulation in mGluR5 availability in the PTSD-SI group (P’s = 0.001–0.007) compared with PTSD individuals without SI. Findings point to the potential role for mGluR5 as a target for intervention and, potentially, suicide risk management in PTSD.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sébastien Goutal ◽  
Martine Guillermier ◽  
Guillaume Becker ◽  
Mylène Gaudin ◽  
Yann Bramoullé ◽  
...  

Abstract Background Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. Results [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. Conclusions Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low.


1999 ◽  
Vol 19 (7) ◽  
pp. 803-808 ◽  
Author(s):  
Anthony K. P. Jones ◽  
Niel D. Kitchen ◽  
Hiroshi Watabe ◽  
Vincent J. Cunningham ◽  
Terry Jones ◽  
...  

The binding of [11C]diprenorphine to µ, κ, and Δ subsites in cortical and subcortical structures was measured by positron emission tomography in vivo in six patients before and after surgical relief of trigeminal neuralgia pain. The volume of distribution of [11C]diprenorphine binding was significantly increased after thermocoagulation of the relevant trigeminal division in the following areas: prefrontal, insular, perigenual, mid-cingulate and inferior parietal cortices, basal ganglia, and thalamus bilaterally. In addition to the pain relief associated with the surgical procedure, there also was an improvement in anxiety and depression scores. In the context of other studies, these changes in binding most likely resulted from the change in the pain state. The results suggest an increased occupancy by endogenous opioid peptides during trigeminal pain but cannot exclude coexistent down-regulation of binding sites.


1984 ◽  
Vol 4 (3) ◽  
pp. 323-328 ◽  
Author(s):  
R. M. Kessler ◽  
J. C. Goble ◽  
J. H. Bird ◽  
M. E. Girton ◽  
J. L. Doppman ◽  
...  

Positron emission tomography (PET) was employed to examine time-dependent changes in blood–brain barrier (BBB) permeability to [68Ga]ethylenediaminetetraacetate (EDTA) in the rhesus monkey, following reversible barrier opening by intracarotid infusion of a hypertonic mannitol solution. The PET technique, when combined with measurements of plasma radioactivity, provided a quantitative measure of the cerebrovascular permeability-area product ( PA) at different times following mannitol infusion. Hypertonic mannitol treatment reversibly increased PA to [68Ga]EDTA more than 10-fold; much of the barrier effect was over by 10 min after mannitol treatment. The results show that PET can be used to measure transient changes in BBB integrity in specific brain regions, under in vivo, noninvasive conditions.


2010 ◽  
Vol 31 (1) ◽  
pp. 243-249 ◽  
Author(s):  
Matthew S Milak ◽  
Alin J Severance ◽  
Jaya Prabhakaran ◽  
JS Dileep Kumar ◽  
Vattoly J Majo ◽  
...  

Positron emission tomography studies of 5-hydroxytryptamine (5-HT)1A receptors have hitherto been limited to antagonist radiotracers. Antagonists do not distinguish high/low-affinity conformations of G protein-coupled receptors and are less likely to be sensitive to intrasynaptic serotonin levels. We developed a novel 5-HT1A agonist radiotracer [11C]CUMI-101. This study evaluates the sensitivity of [11C]CUMI-101 binding to increases in intrasynaptic serotonin induced by intravenous citalopram and fenfluramine. Two Papio anubis were scanned, using [11C]CUMI-101 intravenous bolus of 4.5±1.5 mCi. Binding potential (BPF= Bavail/ KD) was measured before ( n=10) and 20 minutes after elevation of intrasynaptic serotonin by intravenous citalopram (2 mg/kg, n=3; 4 mg/kg, n=3) and fenfluramine (2.5 mg/kg, n=3) using a metabolite-corrected arterial input function. Occupancy was also estimated by the Lassen graphical approach. Both citalopram and fenfluramine effects were significant for BPF ( P=0.031, P=0.049, respectively). The Lassen approach estimated 15.0, 30.4, and 23.7% average occupancy after citalopram 2 mg/kg, 4 mg/kg, and fenfluramine 2.5 mg/kg, respectively. [11C]CUMI-101 binding is sensitive to a large increase in intrasynaptic serotonin in response to robust pharmacological challenges. These modest changes in BPF may make it unlikely that this ligand will detect changes in intrasynaptic 5-HT under physiologic conditions; future work will focus on evaluating its utility in measuring the responsiveness of the 5-HT system to pharmacological challenges.


1990 ◽  
Vol 10 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Eric Salmon ◽  
David J. Brooks ◽  
Klaus L. Leenders ◽  
David R. Turton ◽  
Sue P. Hume ◽  
...  

S-[11C]Nomifensine ( S-[11C]NMF) is a positron-emitting tracer suitable for positron emission tomography, which binds to both dopaminergic and noradrenergic reuptake sites in the striatum and the thalamus. Modelling of the cerebral distribution of this drug has been hampered by the rapid appearance of glucuronide metabolites in the plasma, which do not cross the blood–brain barrier. To date, [11C]NMF uptake has simply been expressed as regional versus nonspecific cerebellar activity ratios. We have calculated a “free” NMF input curve from red cell activity curves, using the fact that the free drug rapidly equilibrates between red cells and plasma, while glucuronides do not enter red cells. With this free [11C]NMF input function, all regional cerebral uptake curves could be fitted to a conventional two-compartment model, defining tracer distribution in terms of [11C]NMF regional volume of distribution. Assuming that the cerebellar volume of distribution of [11C]NMF represents the nonspecific volume of distribution of the tracer in striatum and thalamus, we have calculated an equilibrium partition coefficient for [11C]NMF between freely exchanging specific and nonspecific compartments in these regions, representing its “binding potential” to dopaminergic or noradrenergic uptake sites (or complexes). This partition coefficient was lower in the striatum when the racemate rather than the active S-enantiomer of [11C]NMF was administered. In the striatum of patients suffering from Parkinson's disease and multiple-system atrophy, the specific compartmentation of S-[11C]NMF was significantly decreased compared with that of age-matched volunteers.


2015 ◽  
Vol 35 (8) ◽  
pp. 1368-1379 ◽  
Author(s):  
Francesca Zanderigo ◽  
Ramin V Parsey ◽  
R Todd Ogden

Dynamic positron emission tomography (PET) data are usually quantified using compartment models (CMs) or derived graphical approaches. Often, however, CMs either do not properly describe the tracer kinetics, or are not identifiable, leading to nonphysiologic estimates of the tracer binding. The PET data are modeled as the convolution of the metabolite-corrected input function and the tracer impulse response function (IRF) in the tissue. Using nonparametric deconvolution methods, it is possible to obtain model-free estimates of the IRF, from which functionals related to tracer volume of distribution and binding may be computed, but this approach has rarely been applied in PET. Here, we apply nonparametric deconvolution using singular value decomposition to simulated and test–retest clinical PET data with four reversible tracers well characterized by CMs ([11C]CUMI-101, [11C]DASB, [11C]PE2I, and [11C]WAY-100635), and systematically compare reproducibility, reliability, and identifiability of various IRF-derived functionals with that of traditional CMs outcomes. Results show that nonparametric deconvolution, completely free of any model assumptions, allows for estimates of tracer volume of distribution and binding that are very close to the estimates obtained with CMs and, in some cases, show better test–retest performance than CMs outcomes.


2002 ◽  
Vol 22 (7) ◽  
pp. 878-889 ◽  
Author(s):  
Anne Lingford-Hughes ◽  
Susan P. Hume ◽  
Adrian Feeney ◽  
Ella Hirani ◽  
Safiye Osman ◽  
...  

There is evidence of marked variation in the brain distribution of specific subtypes of the GABA-benzodiazepine receptor and that particular subtypes mediate different functions. The α5-containing subtype is highly expressed in the hippocampus, and selective α5 inverse agonists (which decrease tonic GABA inhibition) are being developed as potential memory-enhancing agents. Evidence for such receptor localization and specialization in humans in vivo is lacking because the widely used probes for imaging the GABA-benzodiazepine receptors, [11C]flumazenil and [123I]iomazenil, appear to reflect binding to the α1 subtype, based on its distribution and affinity of flumazenil for this subtype. The authors characterized for positron emission tomography (PET) a radioligand from Ro15 4513, the binding of which has a marked limbic distribution in the rat and human brain in vivo. Competition studies in vivo in the rat revealed that radiolabeled Ro15 4513 uptake was reduced to nonspecific levels only by drugs that have affinity for the α5 subtype (flunitrazepam, RY80, Ro15 4513, L655,708), but not by the α1 selective agonist, zolpidem. Quantification of [11C]Ro15 4513 PET was performed in humans using a metabolite-corrected plasma input function. [11C]Ro15 4513 uptake was relatively greater in limbic areas compared with [11C]flumazenil, but lower in the occipital cortex and cerebellum. The authors conclude that [11C]Ro15 4513 PET labels in vivo the GABA-benzodiazepine receptor containing the α5 subtype in limbic structures and can be used to further explore the functional role of this subtype in humans.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Mathieu Verdurand ◽  
Vu Nguyen ◽  
Daniela Stark ◽  
David Zahra ◽  
Marie-Claude Gregoire ◽  
...  

Despite the important role of cannabinoid CB1 receptors (CB1R) in brain development, little is known about their status during adolescence, a critical period for both the development of psychosis and for initiation to substance abuse. In the present study, we assessed the ontogeny of CB1R in adolescent and adult rats in vivo using positron emission tomography with [18F]MK-9470. Analysis of covariance (ANCOVA) to control for body weight that would potentially influence [18F]MK-9470 values between the two groups revealed a main effect of age (F(1,109)=5.0, P=0.02) on [18F]MK-9470 absolute binding (calculated as percentage of injected dose) with adult estimated marginal means being higher compared to adolescents amongst 11 brain regions. This finding was confirmed using in vitro autoradiography with [3H]CP55,940 (F(10,99)=140.1, P<0.0001). This ontogenetic pattern, suggesting increase of CB1R during the transition from adolescence to adulthood, is the opposite of most other neuroreceptor systems undergoing pruning during this period.


2020 ◽  
Vol 12 (543) ◽  
pp. eaau2939 ◽  
Author(s):  
Shuiyu Lu ◽  
Mohammad B. Haskali ◽  
Kevin M. Ruley ◽  
Nicolas J.-F. Dreyfus ◽  
Susan L. DuBois ◽  
...  

We aimed to develop effective radioligands for quantifying brain O-linked-β-N-acetyl-glucosamine (O-GlcNAc) hydrolase (OGA) using positron emission tomography in living subjects as tools for evaluating drug target engagement. Posttranslational modifications of tau, a biomarker of Alzheimer’s disease, by O-GlcNAc through the enzyme pair OGA and O-GlcNAc transferase (OGT) are inversely related to the amounts of its insoluble hyperphosphorylated form. Increase in tau O-GlcNAcylation by OGA inhibition is believed to reduce tau aggregation. LSN3316612, a highly selective and potent OGA ligand [half-maximal inhibitory concentration (IC50) = 1.9 nM], emerged as a lead ligand after in silico analysis and in vitro evaluations. [3H]LSN3316612 imaged and quantified OGA in postmortem brains of rat, monkey, and human. The presence of fluorine and carbonyl functionality in LSN3316612 enabled labeling with positron-emitting fluorine-18 or carbon-11. Both [18F]LSN3316612 and [11C]LSN3316612 bound reversibly to OGA in vivo, and such binding was blocked by pharmacological doses of thiamet G, an OGA inhibitor of different chemotype, in monkeys. [18F]LSN3316612 entered healthy human brain avidly (~4 SUV) without radiodefluorination or adverse effect from other radiometabolites, as evidenced by stable brain total volume of distribution (VT) values by 110 min of scanning. Overall, [18F]LSN3316612 is preferred over [11C]LSN3316612 for future human studies, whereas either may be an effective positron emission tomography radioligand for quantifying brain OGA in rodent and monkey.


1999 ◽  
Vol 19 (3) ◽  
pp. 278-287 ◽  
Author(s):  
D. J. Doudet ◽  
G. L.-Y. Chan ◽  
S. Jivan ◽  
O. T. DeJesus ◽  
E. G. McGeer ◽  
...  

The effectiveness of 6-[18F]fluoro-L- m-tyrosine (6FMT) to evaluate dopamine presynaptic integrity was compared to that of 6-[18F]fluoro-L-dopa (6FDOPA) in vivo by positron emission tomography (PET). Six normal and six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -lesioned monkeys received 6FDOPA and 6FMT PET scans on separate occasions with identical scanning protocols. Four measures, the rate of uptake of tracer into striatum using either the arterial input function ( Ki) or the activity in the occipital cortex as the input function ( Kc), the rate of loss of striatal radioactivity ( kloss), and an index of “effective turnover” of dopamine ( kloss/ Ki), were obtained for both tracers during extended PET studies. 6-[18F]Fluoro-L- m-tyrosine was as effective as 6FDOPA in separating normals from MPTP-lesioned subjects on the basis of the uptake rate constants Ki and Kc. However, in contrast to 6FDOPA, it was not possible to differentiate the normal from the lesioned animal using kloss or kloss/ Ki for 6FMT. Thus, FMT appears to be a reasonable, highly specific tracer for studying the activity of aromatic dopa decarboxylase enzyme as an index of presynaptic integrity. However, if one is interested in investigating further the metabolic pathway and obtaining an in vivo estimate of the effective turnover of dopamine (after pharmacologic manipulation, for example), 6FDOPA remains the tracer of choice.


Sign in / Sign up

Export Citation Format

Share Document