scholarly journals The long-distance flight behavior of Drosophila supports an agent-based model for wind-assisted dispersal in insects

2021 ◽  
Vol 118 (17) ◽  
pp. e2013342118
Author(s):  
Katherine J. Leitch ◽  
Francesca V. Ponce ◽  
William B. Dickson ◽  
Floris van Breugel ◽  
Michael H. Dickinson

Despite the ecological importance of long-distance dispersal in insects, its mechanistic basis is poorly understood in genetic model species, in which advanced molecular tools are readily available. One critical question is how insects interact with the wind to detect attractive odor plumes and increase their travel distance as they disperse. To gain insight into dispersal, we conducted release-and-recapture experiments in the Mojave Desert using the fruit fly, Drosophila melanogaster. We deployed chemically baited traps in a 1 km radius ring around the release site, equipped with cameras that captured the arrival times of flies as they landed. In each experiment, we released between 30,000 and 200,000 flies. By repeating the experiments under a variety of conditions, we were able to quantify the influence of wind on flies’ dispersal behavior. Our results confirm that even tiny fruit flies could disperse ∼12 km in a single flight in still air and might travel many times that distance in a moderate wind. The dispersal behavior of the flies is well explained by an agent-based model in which animals maintain a fixed body orientation relative to celestial cues, actively regulate groundspeed along their body axis, and allow the wind to advect them sideways. The model accounts for the observation that flies actively fan out in all directions in still air but are increasingly advected downwind as winds intensify. Our results suggest that dispersing insects may strike a balance between the need to cover large distances while still maintaining the chance of intercepting odor plumes from upwind sources.

Author(s):  
Katherine Leitch ◽  
Francesca Ponce ◽  
Floris van Breugel ◽  
Michael H. Dickinson

AbstractDespite the ecological importance of long-distance dispersal in insects, its underlying mechanistic basis is poorly understood. One critical question is how insects interact with the wind to increase their travel distance as they disperse. To gain insight into dispersal using a species amenable to further investigation using genetic tools, we conducted release-and-recapture experiments in the Mojave Desert using the fruit fly, Drosophila melanogaster. We deployed chemically-baited traps in a 1 km-radius ring around the release site, equipped with machine vision systems that captured the arrival times of flies as they landed. In each experiment, we released between 30,000 and 200,000 flies. By repeating the experiments under a variety of conditions, we were able to quantify the influence of wind on flies’ dispersal behavior. Our results confirm that even tiny fruit flies could disperse ∼15 km in a single flight in still air, and might travel many times that distance in a moderate wind. The dispersal behavior of the flies is well explained by a model in which animals maintain a fixed body orientation relative to celestial cues, actively regulate groundspeed along their body axis, and allow the wind to advect them sideways. The model accounts for the observation that flies actively fan out in all directions in still air, but are increasingly advected downwind as winds intensify. In contrast, our field data do not support a Lévy flight model of dispersal, despite the fact that our experimental conditions almost perfectly match the core assumptions of that theory.Significance StatementFlying insects play a vital role in terrestrial ecosystems, and their decline over the past few decades has been implicated in a collapse of many species that depend upon them for food. By dispersing over large distances, insects transport biomass from one region to another and thus their flight behavior influences ecology on a global scale. Our experiments provide key insight into the dispersal behavior of insects, and suggest that these animals employ a single algorithm that is functionally robust in both still air and under windy conditions. Our results will make it easier to study the ecologically important phenomenon of long-distance dispersal in a genetic model organism, facilitating the identification of cellular and genetic mechanisms.


2019 ◽  
Vol 16 (160) ◽  
pp. 20190264
Author(s):  
Asaf Liberman ◽  
Matan Mussel ◽  
Danny Kario ◽  
David Sprinzak ◽  
Uri Nevo

Predictive modelling of complex biological systems and biophysical interactions requires the inclusion of multiple nano- and micro-scale events. In many scenarios, however, numerical solutions alone do not necessarily enhance the understanding of the system. Instead, this work explores the use of an agent-based model with visualization capabilities to elucidate interactions between single cells. We present a model of juxtacrine signalling, using Cell Studio, an agent-based modelling system, based on gaming and three-dimensional visualization tools. The main advantages of the system are its ability to apply any cell geometry and to dynamically visualize the diffusion and interactions of the molecules within the cells in real time. These provide an excellent tool for obtaining insight about different biological scenarios, as the user may view the dynamics of a system and observe its emergent behaviour as it unfolds. The agent-based model was validated against the results of a mean-field model of Notch receptors and ligands in two neighbouring cells. The conversion to an agent-based model is described in detail. To demonstrate the advantages of the model, we further created a filopodium-mediated signalling model. Our model revealed that diffusion and endocytosis alone are insufficient to produce significant signalling in a filopodia scenario. This is due to the bottleneck at the cell–filopodium contact region and the long distance to the end of the filopodium. However, allowing active transport of ligands into filopodia enhances the signalling significantly compared with a face-to-face scenario. We conclude that the agent-based approach can provide insights into mechanisms underlying cell signalling. The open-source model can be found in the Internet hosting service GitHub.


2001 ◽  
Author(s):  
Minoru Tabata ◽  
Akira Ide ◽  
Nobuoki Eshima ◽  
Kyushu Takagi ◽  
Yasuhiro Takei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document