An organic transistor matrix for multipoint intracellular action potential recording

2021 ◽  
Vol 118 (39) ◽  
pp. e2022300118
Author(s):  
Yasutoshi Jimbo ◽  
Daisuke Sasaki ◽  
Takashi Ohya ◽  
Sunghoon Lee ◽  
Wonryung Lee ◽  
...  

Electrode arrays are widely used for multipoint recording of electrophysiological activities, and organic electronics have been utilized to achieve both high performance and biocompatibility. However, extracellular electrode arrays record the field potential instead of the membrane potential itself, resulting in the loss of information and signal amplitude. Although much effort has been dedicated to developing intracellular access methods, their three-dimensional structures and advanced protocols prohibited implementation with organic electronics. Here, we show an organic electrochemical transistor (OECT) matrix for the intracellular action potential recording. The driving voltage of sensor matrix simultaneously causes electroporation so that intracellular action potentials are recorded with simple equipment. The amplitude of the recorded peaks was larger than that of an extracellular field potential recording, and it was further enhanced by tuning the driving voltage and geometry of OECTs. The capability of miniaturization and multiplexed recording was demonstrated through a 4 × 4 action potential mapping using a matrix of 5- × 5-μm2 OECTs. Those features are realized using a mild fabrication process and a simple circuit without limiting the potential applications of functional organic electronics.

2000 ◽  
Vol 84 (3) ◽  
pp. 1505-1518 ◽  
Author(s):  
Michael S. Jones ◽  
Kurt D. MacDonald ◽  
ByungJu Choi ◽  
F. Edward Dudek ◽  
Daniel S. Barth

Oscillatory activity in excess of several hundred hertz has been observed in somatosensory evoked potentials (SEP) recorded in both humans and animals and is attracting increasing interest regarding its role in brain function. Currently, however, little is known about the cellular events underlying these oscillations. The present study employed simultaneous in-vivo intracellular and epipial field-potential recording to investigate the cellular correlates of fast oscillations in rat somatosensory cortex evoked by vibrissa stimulation. Two distinct types of fast oscillations were observed, here termed “fast oscillations” (FO) (200–400 Hz) and “very fast oscillations” (VFO) (400–600 Hz). FO coincided with the earliest slow-wave components of the SEP whereas VFO typically were later and of smaller amplitude. Regular spiking (RS) cells exhibited vibrissa-evoked responses associated with one or both types of fast oscillations and consisted of combinations of spike and/or subthreshold events that, when superimposed across trials, clustered at latencies separated by successive cycles of FO or VFO activity, or a combination of both. Fast spiking (FS) cells responded to vibrissae stimulation with bursts of action potentials that closely approximated the periodicity of the surface VFO. No cells were encountered that produced action potential bursts related to FO activity in an analogous fashion. We propose that fast oscillations define preferred latencies for action potential generation in cortical RS cells, with VFO generated by inhibitory interneurons and FO reflecting both sequential and recurrent activity of stations in the cortical lamina.


2008 ◽  
Vol 37 (6) ◽  
pp. 700-712 ◽  
Author(s):  
Todor I. Arabadzhiev ◽  
George V. Dimitrov ◽  
Vichren E. Chakarov ◽  
Alexander G. Dimitrov ◽  
Nonna A. Dimitrova

2008 ◽  
Vol 37 (6) ◽  
pp. 713-720 ◽  
Author(s):  
Todor I. Arabadzhiev ◽  
George V. Dimitrov ◽  
Vichren E. Chakarov ◽  
Alexander G. Dimitrov ◽  
Nonna A. Dimitrova

1984 ◽  
Vol 20 (6) ◽  
pp. 1622
Author(s):  
G. Ghirlanda ◽  
M. DiGennaro ◽  
L. Uccioli ◽  
R. Bernabei ◽  
P.U. Carbonin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document