driving voltage
Recently Published Documents


TOTAL DOCUMENTS

716
(FIVE YEARS 197)

H-INDEX

34
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 624
Author(s):  
Jinhyuk Kim ◽  
Jungwoo Lee

We recently proposed an analytical design method of Langevin transducers for therapeutic ultrasound treatment by conducting parametric study to estimate the effect of compression force on resonance characteristics. In this study, experimental investigations were further performed under various electrical conditions to observe the acoustic power of the fully equipped transducer and to assess its heat-related bioeffect. Thermal index (TI) tests were carried out to examine temperature rise and thermal damage induced by the acoustic energy in fatty porcine tissue. Acoustic power emission, TI values, temperature characteristics, and depth/size of thermal ablation were measured as a function of transducer’s driving voltage. By exciting the transducer with 300 Vpp sinusoidal continuous waveform, for instance, the average power was 23.1 W and its corresponding TI was 4.1, less than the 6 specified by the Food and Drug Administration (FDA) guideline. The maximum temperature and the depth of the affected site were 74.5 °C and 19 mm, respectively. It is shown that thermal ablation is likely to be more affected by steep heat surge for a short duration rather than by slow temperature rise over time. Hence, the results demonstrate the capability of our ultrasonic transducer intended for therapeutic procedures by safely interrogating soft tissue and yet delivering enough energy to thermally stimulate the tissue in depth.


Author(s):  
Takahiro Iwase ◽  
Jessica Onaka ◽  
Akira Emoto ◽  
Daisuke KOYAMA ◽  
Mami Matsukawa

Abstract The effect of the liquid crystal (LC) layer thickness on the optical characteristics of an ultrasound LC lens was explored. Three LC lenses with differing LC layer thicknesses (100, 200, and 300 µm) were fabricated, and the optical focal lengths were measured by an optical microscope with a varying driving voltage. For the lens with a 200-µm-thick LC layer, a larger change in the focal length was observed for a smaller driving voltage compared with that of the other two lenses, indicating that the LC layer thickness is appropriate for a variable-focus lens.


2022 ◽  
Author(s):  
Joseph Santos-Sacchi

Outer hair cell (OHC) nonlinear membrane capacitance (NLC) represents voltage-dependent sensor charge movements within prestin (SLC26a5) that drive OHC electromotility. Dielectric loss, a shift in charge movement phase from purely capacitive to resistive, is likely indicative of prestin interaction with the viscous lipid bilayer and has been suggested to correspond to prestin power output. The frequency response of NLC in OHC membrane patches has been measured with phase tracking and complex capacitance methodologies. While the latter approach can directly determine the presence of dielectric loss by assessing charge movement both in and out of phase with driving voltage, the former has been suggested to fail in this regard. Here we show that standard phase tracking in the presence of dielectric loss does indeed register this loss. Such estimates of NLC correspond to the absolute magnitude of complex NLC, indicating that total charge movement regardless of phase is assessed, thereby validating past and present measures of NLC frequency response that limits its effectiveness at high frequencies. This observation has important implications for understanding the role of prestin in cochlear amplification.


Author(s):  
Song Chen ◽  
Zhen He ◽  
Chaoping Qian ◽  
Jianping Li ◽  
Zhonghua Zhang ◽  
...  

A piezoelectric micro gas compressor with parallel-serial hybrid chambers (PMGCPS) is presented, which consists of two compression stages of stage I and stage II. The stage I is composed of two piezoelectric driving units connected in parallel, while stage II is composed of a piezoelectric driving unit, forming an integral tower compression structure. Based on the tower compression structure, the PMGCPS owns the dual advantages of large flow rate and high output pressure. The prototype of PMGCPS is designed and manufactured. The driving frequency and voltage characteristics of PMGCPS are experimented. Under the driving frequency of 300 Hz and the driving voltage of 300 Vpp, the maximum flow rate and output pressure of PMGCPS is 795.6 mL/min and 13.4 kPa, respectively. PMGCPS provides new ideas for the further development of piezoelectric micro gas compressor.


Author(s):  
Kentaro Noi ◽  
Kichitaro Nakajima ◽  
Keiichi Yamaguchi ◽  
Masatomo So ◽  
Kensuke Ikenaka ◽  
...  

Abstract Formation of amyloid fibrils of various amyloidogenic proteins is dramatically enhanced by ultrasound irradiation. For applying this phenomenon to the study of protein aggregation science and diagnosis of neurodegenerative diseases, a multichannel ultrasound irradiation system with individually adjustable ultrasound-irradiation conditions is necessary. Here, we develop a sonochemical reaction system, where an ultrasonic transducer is placed in each well of a 96-well microplate to perform ultrasonic irradiation of sample solutions under various conditions with high reproducibility, and applied it for studying amyloid-fibril formation of amyloid $\beta$, $\alpha$-synuclein, $\beta$2-microglobulin, and lysozyme. The results clearly show that our instrument is superior to conventional shaking method in terms of degree of acceleration and reproducibility of fibril formation reaction. The acceleration degree is controllable by controlling the driving voltage applied to each transducer. We have thus succeeded in developing a useful tool for the study of amyloid fibril formation in various proteins.


2021 ◽  
Author(s):  
Bo Fang ◽  
Jianmin Yan ◽  
Dan Chang ◽  
Jinli Piao ◽  
Kit Ming Ma ◽  
...  

Abstract The development of continuous conducting polymer fibres is essential for applications ranging from advanced fibrous devices to frontier fabric electronics. The use of continuous conducting polymer fibres requires a small diameter to maximize their electroactive surfaces, microstructural orientations, and mechanical strengths. However, regularly used wet spinning techniques have rarely achieved this goal due primarily to the insufficient slenderization of rapidly solidified conducting polymer molecules in poor solvents. Here we report a good solvent exchange strategy to wet spin the ultrafine polyaniline fibres at the large scale. The slow diffusion between good solvents distinctly decreases the viscosity of gel protofibers, which undergo an impressive drawing ratio. The continuously collected polyaniline fibres have a previously unattained diameter below 5 µm, high energy and charge storage capacities, and favorable mechanical performance. We demonstrated an ultrathin all-solid organic electrochemical transistor based on ultrafine polyaniline fibres, which substantially amplified microampere drain-source electrical signals with less one volt driving voltage and effectively operated as a tactile sensor detecting pressure and friction forces at different levels. The aggressive electronical and electrochemical merits of ultrafine polyaniline fibres and their great potentials to prepare on industrial scale offer new opportunities for high-performance soft electronics and large-area electronic textiles.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1514
Author(s):  
Ching-Lin Fan ◽  
Wei-Yu Lin ◽  
Chun-Yuan Chen

A new low-frame-rate active-matrix organic light-emitting diode (AMOLED) pixel circuit with low-temperature poly-Si and oxide (LTPO) thin-film transistors (TFTs) for portable displays with high pixel density is reported. The proposed pixel circuit has the excellent ability to compensate for the threshold voltage variation of the driving TFT (ΔVTH_DTFT). By the results of simulation based on a fabricated LTPS TFT and a-IZTO TFT, we found that the error rates of the OLED current were all lower than 2.71% over the range of input data voltages when ΔVTH_DTFT = ±0.33 V, and a low frame rate of 1 Hz could be achieved with no flicker phenomenon. Moreover, with only one capacitor and two signal lines in the pixel circuit, a high pixel density and narrow bezel are expected to be realized. We revealed that the proposed 7T1C pixel circuit with low driving voltage and low frame rate is suitable for portable displays.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guangming Xue ◽  
Jitao Ge ◽  
Peng Ning ◽  
Jun Zhou ◽  
Ke Wang ◽  
...  

AbstractGiant magnetostrictive injector using giant magnetostrictive material acting an electronic controlled injector may be one new promising injector to acquire adjustable injection rates while maintaining large injection quantity. An electronic controlled injector driven by a giant magnetostrictive actuator was designed through combining the driving requirement and output characteristics of the material. To promote responding speed of the coil current, the driving voltage with open-hold-fall type waveform was employed just like using in an electromagnetic injector. Simulation model for the injection characteristic of the injector was established using AMEsim software and verified using experimental results collected by the single injection meter. From simulation and experimental results, designed giant magnetostrictive injector showed good performances as maximum spray rate of 4.5 L/min and minimum spray pulse width of 0.21 ms, and realized the boot shape injection when generated by the designed voltage wave. Furthermore, duration time and amplitude of the pilot spray part in a boot shape injection were respectively adjusted through changing the dwell time and opening time. The boot shape injection reached by the giant magnetostrictive injector can reach quite accurate control of fuel injection and then promote fuel efficiency effectively.


Sign in / Sign up

Export Citation Format

Share Document