repolarization phase
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 17 (12) ◽  
pp. e1009609
Author(s):  
Xu Zhang ◽  
Roeland Hancock ◽  
Sabato Santaniello

Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Raffaele Costa ◽  
Alberto Castagna ◽  
Carlo Torchia ◽  
Carmen Ruberto ◽  
Viviana Vespertini ◽  
...  

The aim of our study was to characterize the repolarization disorders propensity induced by drug-drug interaction. In this observational retrospective study, we report our experience on all elderly patients with ascertained diagnosis of coronavirus disease 2019 through nasopharyngeal swab with real time-polymerase chain reaction at our Pugliese-Ciaccio hospital in Catanzaro, who received hydroxychloroquine (HCQ), with or without azithromycin (AZY). 33 hospitalized patients were examined. We calculated QT value, cQT, QT dispersion, and cQT dispersion and examined possible progression on the basal electrocardiogram (T0) and after the insertion of the drug (T1). The QT value is increased by T0 vs T1 (370±40.74 vs 420±36.91 ms; P=0.000), as well as the cQT value (408±25.40 vs 451.54±58.81; P=0.003), the QT dispersion (QTd: 36.36±14.53 vs 50.90±13.12 ms; P=0.000); the dispersion of cQTc (cQTd 46.27±18.72 vs 63.18±21.93 ms; P=0.001). The ΔQT was 37.44±44.09 while the ΔcQT was 32.01±56.47). The main determinant of QTc prolongation is the number of drug at risk of prolongation of the QT that could influence the ventricular repolarization phase. The use of HCQ in combination with AZY, in patients suffering from severe acute respiratory syndrome-related coronavirus-2, can favor the onset of serious side effects, even potentially fatal. Finally, the measures of QTd and cQTd confirmed additional electrocardiographic parameters useful in identifying patients being treated with drugs at risk of potential adverse arrhythmic events following drug interaction.


2021 ◽  
Vol 61 (1) ◽  
pp. 381-400
Author(s):  
Emely Thompson ◽  
Jodene Eldstrom ◽  
David Fedida

Kv7 channels (Kv7.1–7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1–5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2–7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2–7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.


2020 ◽  
Author(s):  
Gianluca Selvaggio ◽  
Wan Hongbin ◽  
Robert A. Pearlstein

AbstractThe ventricular action potential (AP) is subserved by an interdependent system of voltage-gated ion channels and pumps that both alter and respond (directly or indirectly) to the dynamic transmembrane potential (Δψm(t)) via voltage-dependent state transitions governing inward and outward ion currents. The native dynamic inward-outward current balance is subject to disruption caused by acquired or inherited loss or gain of function in one or more ion channels or pumps. Building on our previous work, we used a modified version of the O’Hara-Rudy (ORd) model of the undiseased human ventricular cardiomyocyte to study the pro-arrhythmic effects of three types of arrhythmia-inducing perturbations in midmyocytes (M cells): Blockade of the human ether-a-go-go related gene (hERG) K+ channel introduced via a Markov state binding model.Mutation-induced voltage shifts in hERG channel gating, resulting in faster inactivation or slowed recovery of both phosphorylated and non-phosphorylated forms of the channel (known as LQT2 syndrome).Mutation-induced voltage shifts in Nav1.5 gating, resulting in slowed late inactivation of the phosphorylated and non-phosphorylated forms of the channel (known as LQT3 syndrome).We studied the relationships between ion current anomalies and AP morphology as a function of cycle length (CL) and perturbation type/level. The results are summarized as follows: AP duration (APD) is governed directly by Kir2.1 activation (IK1), which is delayed when repolarization is slowed by abnormal net inward tipping of the dynamic inward-outward current balance (reflected in decreased d(Δψm(t))/dt during the late AP repolarization phase). In the case of hERG blockade by non-trappable compounds, the perturbation level consists of the dynamic fractional occupancy of the channel, which is governed by blocker kon relative to the rate of channel opening, pharmacokinetic exposure, and koff (in that order).Arrhythmia progresses from prolonged paced APs → atypical APs (spontaneous and paced) → self-sustaining oscillations. Abrupt transitions between these regimes occur at CL- and perturbation-specific thresholds (denoted as T1, T2, and T3, respectively), whereas intra-regime progression proceeds in a graded fashion toward the subsequent threshold. APD and d(Δψm(t))/dt during the late repolarization phase varied significantly across the 200 APs of our simulations near the T1 threshold at CL = 1/35 min, reflecting increasing instability of the AP generation system.Arrhythmic APs exhibit highly variable cycle-to-cycle morphologies, depending on the perturbation level, type, and phasing between the underlying ion channel states and pacing cycle.Atypical APs may be triggered by typical or atypical depolarizations prior to the T3 threshold, depending on perturbation type/level and phasing relative to CL: APD/CL resides outside of the Goldilocks zone: APD/CL → 1 at shorter CL and/or longer APD, resulting in pro-arrhythmic “collisions” between successive paced APs (APi and APj) within a given cardiomyocyte. We studied this scenario at 60 and 80 beats per minute (BPM), equating to CL = 1/60 and 1/80 min.APD/CL < 1 at longer CL results in spontaneous atypical depolarizations within prolonged paced APs at elevated takeoff Δψm(t) and increased channel phosphorylation levels. We studied this scenario at CL = 1/35 min.APD and d(Δψm(t))/dt during the late repolarization phase become increasingly variable over successive APs on approach to the T1 threshold, which is the possible source of short-long-short sequences observed in the ECG preceding torsades de pointes arrhythmia (TdP).All atypical depolarizations are solely Cav1.2 (ICa,L)-driven (Δψm(t) falls within the Nav1.5 inactivation window), whereas typical depolarizations are Nav1.5 (INa) + ICa,L-driven. Atypical depolarization versus typical repolarization occurrences are determined by the faster of Cav1.2 and Kir2.1 (IK1) activation (where IK1 becomes increasingly dampened as the minimum Δψm(t) drifts above the Kir2.1 activation window).Cav1.2 inactivation gates reset to the open position (accompanied by recovery) synchronously with channel closing under control conditions, generating a small ICa,L window current in the process. This current grows toward a depolarizing spike when the lag time between recovery and closing grows above a threshold level.APs undergo damped oscillatory Cav1.2 recovery/re-inactivation cycles above the T3 threshold, which are refreshed by subsequent pacing signals (nodal or reentrant in origin).


2020 ◽  
Vol 43 (10) ◽  
pp. 1096-1103
Author(s):  
Gianfranco Piccirillo ◽  
Federica Moscucci ◽  
Claudia Di Iorio ◽  
Marcella Fabietti ◽  
Fabiola Mastropietri ◽  
...  

2020 ◽  
Author(s):  
Joost A. Offerhaus ◽  
Peter C. Snelderwaard ◽  
Jaeike W. Faber ◽  
Katharina Riebe ◽  
Bjarke Jensen ◽  
...  

AbstractBrief cardiac cycles are required to achieve high heart rates as seen in endothermic animals. A main determinant of the cardiac cycle is the repolarization phase of the cardiac action potential, which is visible in the ECG as a T-wave. In mammals with high heart rates – such as rodents – the repolarization phase is short and the ECG is characterized by a positive deflection following the QRS-complex, the J-wave. It is unclear whether birds with high heart rates show similar ECG characteristics. Here we study cardiac repolarization and the ECG in the zebra finch which has high heart rates. In ex vivo hearts of zebra finch (N=5) and mouse (N=5), pseudo-ECGs and optical action potentials were measured. In both species, total ventricular activation was fast with QRS durations shorter than 10ms. Ventricular activation progressed from the left to the right ventricle in zebra finch whereas the activation pattern was apex-to-base in mouse. In both species, phase 1 early repolarization followed the activation front, causing a positive J-wave in the pseudo-ECG. In zebra finch, late repolarization was directed from the right ventricle to the left ventricle, whereas late repolarization was directed opposite in mouse. Accordingly, on the zebra finch ECG, the J-wave and the T-wave have the same direction, whereas in the mouse the J-wave and the T-wave are discordant. Our findings demonstrate early repolarization and the associated J-wave are not restricted to mammals and that they also occur within birds. Early repolarization may have evolved by convergence in association with high heart rates.Summary statementZebra finches are small birds with high heart rates. Similar to small rodents, the zebra finch ECG contains a J-wave, which is caused by early repolarization


2020 ◽  
Vol 118 (3) ◽  
pp. 101a
Author(s):  
Nan Wang ◽  
Eef Dries ◽  
Ewan D. Fowler ◽  
Jules C. Hancox ◽  
Mark B. Cannell

EP Europace ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1566-1574 ◽  
Author(s):  
Flavio D’Ascenzi ◽  
Francesca Anselmi ◽  
Francesca Graziano ◽  
Beatrice Berti ◽  
Andrea Franchini ◽  
...  

Abstract Aims Twelve-lead electrocardiogram (ECG) is an established tool in the evaluation of athletes, providing information about life-threatening cardiovascular diseases, such as long QT syndrome. However, the interpretation of ECG is sometimes challenging in children, particularly for the repolarization phase. The aim of this prospective, longitudinal study was to determinate the distribution of QT interval in children practicing sport and to evaluate changes in QT duration overtime. Methods and results A population of 1473 preadolescents practising sport (12.0 ± 1.8 years, 7–15 years) was analysed. Each athlete was evaluated at baseline, mid-term, and end of the study (mean follow-up: 3 ± 1 years). QT interval was corrected with Bazett (B) and Fridericia (F) formulae. At baseline QT interval corrected with the Bazett formula (QTcB) was 412 ± 25 ms and QT interval corrected with the Fridericia formula (QTcF) 387 ± 21 ms, with no changes during follow-up. Ten children (0.68%) had an abnormal QTc. In those with QTcB and QTcF ≥480 ms, QTc duration persisted abnormal during the follow-up and they were disqualified. Conversely, children with 460 ms < (QTcB) <480 ms had a normal QTc interval at the end of the study. These children had also a normal QTcF. Mean difference in the calculation of QT between the two formulae was 25 ± 11 ms (P < 0.0001). For resting heart rate (HR) ≥82 b.p.m., QTcF was independent from HR contrary to QTcB. Conclusion Normal QTc interval does not change over time in preadolescents. A minority of them has a QTc ≥480 ms; in these subjects, QTc interval remains prolonged. The use of Bazett and Fridericia correction formulae is not interchangeable and the Fridericia correction should be preferred in preadolescents with a resting HR ≥82 b.p.m.


2019 ◽  
Vol 20 (11) ◽  
pp. 2611 ◽  
Author(s):  
Klausen Oliveira-Abreu ◽  
Nathalia Silva-dos-Santos ◽  
Andrelina Coelho-de-Souza ◽  
Francisco Ferreira-da-Silva ◽  
Kerly Silva-Alves ◽  
...  

Melatonin is a neurohormone produced and secreted at night by pineal gland. Many effects of melatonin have already been described, for example: Activation of potassium channels in the suprachiasmatic nucleus and inhibition of excitability of a sub-population of neurons of the dorsal root ganglia (DRG). The DRG is described as a structure with several neuronal populations. One classification, based on the repolarizing phase of the action potential (AP), divides DRG neurons into two types: Without (N0) and with (Ninf) inflection on the repolarization phase of the action potential. We have previously demonstrated that melatonin inhibits excitability in N0 neurons, and in the present work, we aimed to investigate the melatonin effects on the other neurons (Ninf) of the DRG neuronal population. This investigation was done using sharp microelectrode technique in the current clamp mode. Melatonin (0.01–1000.0 nM) showed inhibitory activity on neuronal excitability, which can be observed by the blockade of the AP and by the increase in rheobase. However, we observed that, while some neurons were sensitive to melatonin effect on excitability (excitability melatonin sensitive—EMS), other neurons were not sensitive to melatonin effect on excitability (excitability melatonin not sensitive—EMNS). Concerning the passive electrophysiological properties of the neurons, melatonin caused a hyperpolarization of the resting membrane potential in both cell types. Regarding the input resistance (Rin), melatonin did not change this parameter in the EMS cells, but increased its values in the EMNS cells. Melatonin also altered several AP parameters in EMS cells, the most conspicuously changed was the (dV/dt)max of AP depolarization, which is in coherence with melatonin effects on excitability. Otherwise, in EMNS cells, melatonin (0.1–1000.0 nM) induced no alteration of (dV/dt)max of AP depolarization. Thus, taking these data together, and the data of previous publication on melatonin effect on N0 neurons shows that this substance has a greater pharmacological potency on Ninf neurons. We suggest that melatonin has important physiological function related to Ninf neurons and this is likely to bear a potential relevant therapeutic use, since Ninf neurons are related to nociception.


2018 ◽  
Vol 59 (4) ◽  
pp. 677-679
Author(s):  
Tsukasa Oshima ◽  
Katsuhito Fujiu

Sign in / Sign up

Export Citation Format

Share Document