scholarly journals The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells

2021 ◽  
Vol 118 (23) ◽  
pp. e2101826118
Author(s):  
S. Andrew Shuster ◽  
Mark J. Wagner ◽  
Nathan Pan-Doh ◽  
Jing Ren ◽  
Sophie M. Grutzner ◽  
...  

Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.

2021 ◽  
Author(s):  
S. Andrew Shuster ◽  
Mark J. Wagner ◽  
Nathan Pan-Doh ◽  
Jing Ren ◽  
Sophie M. Grutzner ◽  
...  

AbstractCerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular properties that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birthtime and the depth of the molecular layer to which their axons (parallel fibers) project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control, early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multi-depth 2-photon Ca2+ imaging of parallel fibers of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with differences in the proportions of parallel fibers encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry, but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also suggest that GrCs can represent general aversiveness, in addition to recently described reward representations.Significance StatementCerebellar granule cells (GrCs) comprise the majority of all neurons in the mammalian brain and are usually regarded as a uniform cell type. However, the birth timing of an individual GrC dictates where its axon projects. Using viral-genetic techniques, we find that early- and late-born GrCs receive different proportions of inputs from the same set of input regions. Using in vivo multi-depth 2-photon Ca2+ imaging of axons of early- and late-born GrCs, we found that both populations represent diverse task variables and stimuli, with differences in the proportions of axons in encoding of a subset of movement and reward parameters. These results indicate that birth timing contributes to the input selection and physiological response properties of GrCs.


Author(s):  
Rosita F. de Estable-Puig ◽  
Juan F. Estable-Puig

The granular layer of the cerebellar cortex situated between the molecular and medullary layers is built up mainly of the perikarya of small interneurons, the granule cells intermingled with part of their own processes, mossy fiber terminals, fibers of passage and other less numerous intrinsic cells. Ultrastructurally they are characterized by a nucleus which occupies most of the cell body and a rim of cytoplasm. The nucleus exhibits some aggregates of chromatin and in some cells a nucleolus. In the cytoplasm very scarce organelles are observed (Fig.l). Their main synaptic connections are found, first, at the cerebellar glomerulus where granule dendrites are seen in postsynaptic position towards mossy fiber rosettes. Desmosomic attachments are observed between granule dendrites. Second, at the level of the molecular layer where parallel fiber terminals (ramifications of the peripheral axon ) are seen apposing Purkinje dendrite spines.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jun Kyu Rhee ◽  
Heeyoun Park ◽  
Taegon Kim ◽  
Yukio Yamamoto ◽  
Keiko Tanaka-Yamamoto

AbstractCerebellar granule cells (GCs) relay mossy fiber (MF) inputs to Purkinje cell dendrites via their axons, the parallel fibers (PFs), which are individually located at a given sublayer of the molecular layer (ML). Although a certain degree of heterogeneity among GCs has been recently reported, variability of GC responses to MF inputs has never been associated with their most notable structural variability, location of their projecting PFs in the ML. Here, we utilize an adeno-associated virus (AAV)-mediated labeling technique that enables us to categorize GCs according to the location of their PFs, and compare the Ca2+ responses to MF stimulations between three groups of GCs, consisting of either GCs having PFs at the deep (D-GCs), middle (M-GCs), or superficial (S-GCs) sublayer. Our structural analysis revealed that there was no correlation between position of GC soma in the GC layer and location of its PF in the ML, confirming that our AAV-mediated labeling was important to test the projection-dependent variability of the Ca2+ responses in GCs. We then found that the Ca2+ responses of D-GCs differed from those of M-GCs. Pharmacological experiments implied that the different Ca2+ responses were mainly attributable to varied distributions of GABAA receptors (GABAARs) at the synaptic and extrasynaptic regions of GC dendrites. In addition to GABAAR distributions, amounts of extrasynaptic NMDA receptors appear to be also varied, because Ca2+ responses were different between D-GCs and M-GCs when glutamate spillover was enhanced. Whereas the Ca2+ responses of S-GCs were mostly equivalent to those of D-GCs and M-GCs, the blockade of GABA uptake resulted in larger Ca2+ responses in S-GCs compared with D-GCs and M-GCs, implying existence of mechanisms leading to more excitability in S-GCs with increased GABA release. Thus, this study reveals MF stimulation-mediated non-uniform Ca2+ responses in the cerebellar GCs associated with the location of their PFs in the ML, and raises a possibility that combination of inherent functional variability of GCs and their specific axonal projection contributes to the information processing through the GCs.


2007 ◽  
Vol 97 (1) ◽  
pp. 248-263 ◽  
Author(s):  
Fidel Santamaria ◽  
Patrick G. Tripp ◽  
James M. Bower

Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential “beamlike” activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition. This prediction was tested, in vivo, by recording PCs sharing a common set of pfs before and after pharmacologically blocking inhibitory inputs. As predicted by the model, pf-induced beams of excitatory PC responses were seen only when inhibition was blocked. Blocking inhibition did not have a significant effect in the excitability of the cerebellar cortex. We conclude that pfs work in concert with feedforward cortical inhibition to regulate the excitability of the PC dendrite without directly influencing PC spiking output. This conclusion requires a significant reassessment of classical interpretations of the functional organization of the cerebellar cortex.


2009 ◽  
Vol 65 ◽  
pp. S20
Author(s):  
Taro Ishikawa ◽  
Misa Shimuta ◽  
Michael Hausser

2009 ◽  
Vol 20 (24) ◽  
pp. 5051-5063 ◽  
Author(s):  
Bruna Barneda-Zahonero ◽  
Alfredo Miñano-Molina ◽  
Nahuai Badiola ◽  
Rut Fadó ◽  
Xavier Xifró ◽  
...  

Bone morphogenetic proteins (BMPs) have been implicated in the generation and postnatal differentiation of cerebellar granule cells (CGCs). Here, we examined the eventual role of BMPs on the survival of these neurons. Lack of depolarization causes CGC death by apoptosis in vivo, a phenomenon that is mimicked in vitro by deprivation of high potassium in cultured CGCs. We have found that BMP-6, but not BMP-7, is able to block low potassium–mediated apoptosis in CGCs. The neuroprotective effect of BMP-6 is not accompanied by an increase of Smad translocation to the nucleus, suggesting that the canonical pathway is not involved. By contrast, activation of the MEK/ERK/CREB pathway by BMP-6 is necessary for its neuroprotective effect, which involves inhibition of caspase activity and an increase in Bcl-2 protein levels. Other pathways involved in the regulation of CGC survival, such as the c-Jun terminal kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB, were not affected by BMP-6. Moreover, failure of BMP-7 to activate the MEK/ERK/CREB pathway could explain its inability to protect CGCs from low potassium–mediated apoptosis. Thus, this study demonstrates that BMP-6 acting through the noncanonical MEK/ERK/CREB pathway plays a crucial role on CGC survival.


2016 ◽  
Vol 75 ◽  
pp. 113-121 ◽  
Author(s):  
Celia González-Castillo ◽  
Daniel Ortuño-Sahagún ◽  
Carolina Guzmán-Brambila ◽  
Ana Laura Márquez-Aguirre ◽  
Rita Raisman-Vozari ◽  
...  

2008 ◽  
Vol 30 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Ian Martin Williams ◽  
Barbara Carletti ◽  
Ketty Leto ◽  
Lorenzo Magrassi ◽  
Ferdinando Rossi

Sign in / Sign up

Export Citation Format

Share Document