gaba release
Recently Published Documents


TOTAL DOCUMENTS

934
(FIVE YEARS 103)

H-INDEX

77
(FIVE YEARS 6)

2022 ◽  
Vol 15 ◽  
Author(s):  
Zsolt Kovács ◽  
Serguei N. Skatchkov ◽  
Rüdiger W. Veh ◽  
Zsolt Szabó ◽  
Krisztina Németh ◽  
...  

Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.


2022 ◽  
Vol 15 ◽  
Author(s):  
Yuki Sugaya ◽  
Masanobu Kano

Research on endocannabinoid signaling has greatly advanced our understanding of how the excitability of neural circuits is controlled in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses excitability by inhibiting glutamate release, while that at inhibitory synapses promotes excitability by inhibiting GABA release, although there are some exceptions in genetically epileptic animal models. In the epileptic brain, the physiological distributions of endocannabinoid signaling molecules are disrupted during epileptogenesis, contributing to the occurrence of spontaneous seizures. However, it is still unknown how endocannabinoid signaling changes during seizures and how the redistribution of endocannabinoid signaling molecules proceeds during epileptogenesis. Recent development of cannabinoid sensors has enabled us to investigate endocannabinoid signaling in much greater spatial and temporal details than before. Application of cannabinoid sensors to epilepsy research has elucidated activity-dependent changes in endocannabinoid signaling during seizures. Furthermore, recent endocannabinoid research has paved the way for the clinical use of cannabidiol for the treatment of refractory epilepsy, such as Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Cannabidiol significantly reduces seizures and is considered to have comparable tolerability to conventional antiepileptic drugs. In this article, we introduce recent advances in research on the roles of endocannabinoid signaling in epileptic seizures and discuss future directions.


2021 ◽  
Vol 44 (1) ◽  
pp. 206-221
Author(s):  
Wei-Jia Zhi ◽  
Si-Mo Qiao ◽  
Yong Zou ◽  
Rui-Yun Peng ◽  
Hai-Tao Yan ◽  
...  

With the wide application of microwave technology, concerns about its health impact have arisen. The signal transmission mode of the central nervous system and neurons make it particularly sensitive to electromagnetic exposure. It has been reported that abnormal release of amino acid neurotransmitters is mediated by alteration of p-SYN1 after microwave exposure, which results in cognitive dysfunction. As the phosphorylation of SYN1 is regulated by different kinases, in this study we explored the regulatory mechanisms of SYN1 fluctuations following microwave exposure and its subsequent effect on GABA release, aiming to provide clues on the mechanism of cognitive impairment caused by microwave exposure. In vivo studies with Timm and H&E staining were adopted and the results showed abnormality in synapse formation and neuronal structure, explaining the previously-described deficiency in cognitive ability caused by microwave exposure. The observed alterations in SYN1 level, combined with the results of earlier studies, indicate that SYN1 and its phosphorylation status (ser-553 and ser62/67) may play a role in the abnormal release of neurotransmitters. Thus, the role of Cdk5, the upstream kinase regulating the formation of p-SYN1 (ser-553), as well as that of MEK, the regulator of p-SYN1 (ser-62/67), were investigated both in vivo and in vitro. The results showed that Cdk5 was a negative regulator of p-SYN1 (ser-553) and that its up-regulation caused a decrease in GABA release by reducing p-SYN1 (ser-553). While further exploration still needed to elaborate the role of p-SYN1 (ser-62/67) for neurotransmitter release, MEK inhibition had was no impact on p-Erk or p-SYN1 (ser-62/67) after microwave exposure. In conclusion, the decrease of p-SYN1 (ser-553) may result in abnormalities in vesicular anchoring and GABA release, which is caused by increased Cdk5 regulated through Calpain-p25 pathway after 30 mW/cm2 microwave exposure. This study provided a potential new strategy for the prevention and treatment of microwave-induced cognitive dysfunction.


Endocrinology ◽  
2021 ◽  
Author(s):  
Oline K Rønnekleiv ◽  
Jian Qiu ◽  
Martin J Kelly

Abstract Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to GnRH neurons for the coordinated release of gonadotropins, estrous cyclicity and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are two distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1 ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1 AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1 AVPV/PeN neurons but decreases its expression in Kiss1 ARH neurons. Also, Kiss1 ARH neurons co-express glutamate and Kiss1 AVPV/PeN neurons co-express GABA, both of which are upregulated by E2 in females. Also, Kiss1 ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1 ARH neurons project to and excite the anorexigenic proopiomelanocortin (POMC) neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons, highlighting their role in regulating feeding behavior. Kiss1 ARH and Kiss1 AVPV/PeN neurons also project to the pre-autonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1309
Author(s):  
Valery Petrovich Zinchenko ◽  
Artem Mikhailovich Kosenkov ◽  
Sergei Gennadevich Gaidin ◽  
Alexander Igorevich Sergeev ◽  
Ludmila Petrovna Dolgacheva ◽  
...  

Calcium-permeable kainate and AMPA receptors (CP-KARs and CP-AMPARs), as well as NMDARs, play a pivotal role in plasticity and in regulating neurotransmitter release. Here we visualized in the mature hippocampal neuroglial cultures the neurons expressing CP-AMPARs and CP-KARs. These neurons were visualized by a characteristic fast sustained [Ca2+]i increase in response to the agonist of these receptors, domoic acid (DoA), and a selective agonist of GluK1-containing KARs, ATPA. Neurons from both subpopulations are GABAergic. The subpopulation of neurons expressing CP-AMPARs includes a larger percentage of calbindin-positive neurons (39.4 ± 6.0%) than the subpopulation of neurons expressing CP-KARs (14.2 ± 7.5% of CB+ neurons). In addition, we have shown for the first time that NH4Cl-induced depolarization faster induces an [Ca2+]i elevation in GABAergic neurons expressing CP-KARs and CP-AMPARs than in most glutamatergic neurons. CP-AMPARs antagonist, NASPM, increased the amplitude of the DoA-induced Ca2+ response in GABAergic neurons expressing CP-KARs, indicating that neurons expressing CP-AMPARs innervate GABAergic neurons expressing CP-KARs. We assume that CP-KARs in inhibitory neurons are involved in the mechanism of outstripping GABA release upon hyperexcitation.


2021 ◽  
Author(s):  
Lior Matityahu ◽  
Jeffrey Malgady ◽  
Meital Schirelman ◽  
Yvonne Johansson ◽  
Jennifer Wilking ◽  
...  

Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can 1) disynaptically inhibit SPNs by activating α4β2 nicotinic acetylcholine receptors (nAChRs) on various GINs and 2) directly modulate corticostriatal synaptic strength via pre-synaptic α7 nAChR receptors. Measurements of the disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feed-forward inhibition. Moreover, functional nAChRs are also present on populations of GINs that do not respond to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices we show that upon synchronous optogenetic activation of corticostriatal projections, blockade of α7 nAChRs delayed SPN spikes, whereas blockade of α4β2 nAChRs advanced SPN spikes and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond to phasic CIN activation. In particular, the observed spike-advancement caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, and a parallel hyperpolarization of PV-FSIs. Taken together, we describe opposing roles for tonic (as opposed to phasic) engagement of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs both sharpens the temporal fidelity of corticostriatal signaling via pre-synaptic α7 nAChRs and maintains a GABAergic brake on cortically-driven striatal output, processes that may shape SPN spike timing, striatal processing and synaptic plasticity.


2021 ◽  
Author(s):  
Liad J Baruchin ◽  
Filippo Ghezzi ◽  
Michael M Kohl ◽  
Simon J B Butt

Abstract Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Zhang ◽  
Yao Liu ◽  
Xiaoqi Hong ◽  
Xia Li ◽  
Charles K. Meshul ◽  
...  

AbstractNG2 glia, also known as oligodendrocyte precursor cells (OPCs), play an important role in proliferation and give rise to myelinating oligodendrocytes during early brain development. In contrast to other glial cell types, the most intriguing aspect of NG2 glia is their ability to directly sense synaptic inputs from neurons. However, whether this synaptic interaction is bidirectional or unidirectional, or its physiological relevance has not yet been clarified. Here, we report that NG2 glia form synaptic complexes with hippocampal interneurons and that selective photostimulation of NG2 glia (expressing channelrhodopsin-2) functionally drives GABA release and enhances inhibitory synaptic transmission onto proximal interneurons in a microcircuit. The mechanism involves GAD67 biosynthesis and VAMP-2 containing vesicular exocytosis. Further, behavioral assays demonstrate that NG2 glia photoactivation triggers anxiety-like behavior in vivo and contributes to chronic social defeat stress.


2021 ◽  
Vol 36 (3) ◽  
pp. 103-106
Author(s):  
Sri R. Prasetyo

AbstractThe finding of the autoantibodies to islet cells (ICAs) in type-1 diabetes patients is important for developing the fine tuning of individualized therapy. Antibody to Glutamate decarboxylase 2 (GAD65Ab) is the most reliable sign, since it has the most stable sensitivity as diagnostic tool for detecting type-1diabetes. As a key enzyme in gamma-Aminobutyric acid (GABA) synthesis, GAD65 damage caused by GAD65 antibodies (GAD65Abs) would lead to decrease in the amount of GABA vesicles released by b-cells. Decrease of GAD65 induced by GAD65Ab may endanger the paracrine or autocrine function of GABA, that mediated by γ-aminobutyric acid type A receptors (GABAAR) would depolarized the b-cells. The depolarization then increases intracellular Calsium (Ca2+) concentration that is needed for insulin release. The effect of GABA on b-cells is also important for proliferation and anti-apoptosis of b-cells. Moreover, decrease in GABA release also impairs the inhibiting effect of GABA on T-cell proliferation and inflammatory cytokines release that may end up with escalation of GAD65 damage.Keywords: Type-1 diabetes, autoantibody, GAD65Peran Autoantibodi GAD65 dalam Perkembangan Diabetes Tipe-1AbstractPenemuan autoantibodi terhadap sel pulau atau islet cells (ICA) pada pasien diabetes tipe-1 penting untuk mengembangkan penyesuaian terapi individual. Antibodi terhadap Glutamat dekarboksilase 2 (GAD65Ab) adalah tanda yang paling dapat diandalkan, karena memiliki sensitivitas yang paling stabil sebagai alat diagnostik untuk mendeteksi diabetes tipe-1. Sebagai enzim kunci dalam sintesis asam gamma-aminobutirat (GABA), kerusakan GAD65 yang disebabkan oleh antibodi GAD65 (GAD65Abs) akan menyebabkan penurunan jumlah vesikel GABA yang dilepaskan oleh sel. Penurunan GAD65 yang diinduksi oleh GAD65Ab dapat membahayakan fungsi parakrin atau autokrin GABA, yang dimediasi oleh reseptor asam γ-aminobutirat tipe A (GABAAR) akan mendepolarisasi sel. Depolarisasi kemudian meningkatkan konsentrasi kalsium (Ca2+) intraseluler yang diperlukan untuk pelepasan insulin. Efek GABA pada sel beta juga penting untuk proliferasi dan anti-apoptosis sel beta. Selain itu, penurunan pelepasan GABA juga merusak efek penghambatan GABA pada proliferasi sel T dan pelepasan sitokin inflamasi yang mungkin berakhir dengan peningkatan kerusakan GAD65.Kata kunci: Diabetes tipe-1, autoantibodi, GAD65


Sign in / Sign up

Export Citation Format

Share Document