scholarly journals Entropic barrier of topologically immobilized DNA in hydrogels

2021 ◽  
Vol 118 (28) ◽  
pp. e2106380118
Author(s):  
Kuo Chen ◽  
Murugappan Muthukumar

The single most intrinsic property of nonrigid polymer chains is their ability to adopt enormous numbers of chain conformations, resulting in huge conformational entropy. When such macromolecules move in media with restrictive spatial constraints, their trajectories are subjected to reductions in their conformational entropy. The corresponding free energy landscapes are interrupted by entropic barriers separating consecutive spatial domains which function as entropic traps where macromolecules can adopt their conformations more favorably. Movement of macromolecules by negotiating a sequence of entropic barriers is a common paradigm for polymer dynamics in restrictive media. However, if a single chain is simultaneously trapped by many entropic traps, it has recently been suggested that the macromolecule does not undergo diffusion and is localized into a topologically frustrated dynamical state, in apparent violation of Einstein’s theorem. Using fluorescently labeled λ-DNA as the guest macromolecule embedded inside a similarly charged hydrogel with more than 95% water content, we present direct evidence for this new state of polymer dynamics at intermediate confinements. Furthermore, using a combination of theory and experiments, we measure the entropic barrier for a single macromolecule as several tens of thermal energy, which is responsible for the extraordinarily long extreme metastability. The combined theory–experiment protocol presented here is a determination of single-molecule entropic barriers in polymer dynamics. Furthermore, this method offers a convenient general procedure to quantify the underlying free energy landscapes behind the ubiquitous phenomenon of movement of single charged macromolecules in crowded environments.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Christian Bech Rosen ◽  
Hagan Bayley ◽  
David Rodriguez-Larrea

AbstractProtein post-translational translocation is found at the plasma membrane of prokaryotes and protein import into organellae. Translocon structures are becoming available, however the dynamics of proteins during membrane translocation remain largely obscure. Here we study, at the single-molecule level, the folding landscape of a model protein while forced to translocate a transmembrane pore. We use a DNA tag to drive the protein into the α-hemolysin pore under a quantifiable force produced by an applied electric potential. Using a voltage-quench approach we find that the protein fluctuates between the native state and an intermediate in the translocation process at estimated forces as low as 1.9 pN. The fluctuation kinetics provide the free energy landscape as a function of force. We show that our stable, ≈15 kBT, substrate can be unfolded and translocated with physiological membrane potentials and that selective divalent cation binding may have a profound effect on the translocation kinetics.


2015 ◽  
Vol 143 (24) ◽  
pp. 243153 ◽  
Author(s):  
Kannan Sankar ◽  
Jie Liu ◽  
Yuan Wang ◽  
Robert L. Jernigan

2012 ◽  
Vol 18 (21) ◽  
pp. 6420-6427 ◽  
Author(s):  
Hannah Gelman ◽  
Max Platkov ◽  
Martin Gruebele

Sign in / Sign up

Export Citation Format

Share Document