entropic traps
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 118 (28) ◽  
pp. e2106380118
Author(s):  
Kuo Chen ◽  
Murugappan Muthukumar

The single most intrinsic property of nonrigid polymer chains is their ability to adopt enormous numbers of chain conformations, resulting in huge conformational entropy. When such macromolecules move in media with restrictive spatial constraints, their trajectories are subjected to reductions in their conformational entropy. The corresponding free energy landscapes are interrupted by entropic barriers separating consecutive spatial domains which function as entropic traps where macromolecules can adopt their conformations more favorably. Movement of macromolecules by negotiating a sequence of entropic barriers is a common paradigm for polymer dynamics in restrictive media. However, if a single chain is simultaneously trapped by many entropic traps, it has recently been suggested that the macromolecule does not undergo diffusion and is localized into a topologically frustrated dynamical state, in apparent violation of Einstein’s theorem. Using fluorescently labeled λ-DNA as the guest macromolecule embedded inside a similarly charged hydrogel with more than 95% water content, we present direct evidence for this new state of polymer dynamics at intermediate confinements. Furthermore, using a combination of theory and experiments, we measure the entropic barrier for a single macromolecule as several tens of thermal energy, which is responsible for the extraordinarily long extreme metastability. The combined theory–experiment protocol presented here is a determination of single-molecule entropic barriers in polymer dynamics. Furthermore, this method offers a convenient general procedure to quantify the underlying free energy landscapes behind the ubiquitous phenomenon of movement of single charged macromolecules in crowded environments.


2020 ◽  
Vol 432 (20) ◽  
pp. 5649-5664
Author(s):  
Anwar Sadat ◽  
Satyam Tiwari ◽  
Kanika Verma ◽  
Arjun Ray ◽  
Mudassar Ali ◽  
...  

Author(s):  
Anwar Sadat ◽  
Satyam Tiwari ◽  
Kanika Verma ◽  
Arjun Ray ◽  
Mudassar Ali ◽  
...  

ABSTRACTThe folding landscape of proteins can change during evolution with the accumulation of mutations that may introduce entropic or enthalpic barriers in the protein folding pathway, making it a possible substrate of molecular chaperones in vivo. Can the nature of such physical barriers of folding dictate the feasibility of chaperone-assistance? To address this, we have simulated the evolutionary step to chaperone-dependence keeping GroEL/ES as the target chaperone and GFP as a model protein in an unbiased screen. We find that the mutation conferring GroEL/ES dependence in vivo and in vitro encode an entropic trap in the folding pathway rescued by the chaperonin. Additionally, GroEL/ES can edit the formation of non-native contacts similar to DnaK/J/E machinery. However, this capability is not utilized by the substrates in vivo. As a consequence, GroEL/ES caters to buffer mutations that predominantly cause entropic traps, despite possessing the capacity to edit both enthalpic and entropic traps in the folding pathway of the substrate protein.


2015 ◽  
Vol 48 (13) ◽  
pp. 4742-4747 ◽  
Author(s):  
Alexander R. Klotz ◽  
Mikhail Mamaev ◽  
Lyndon Duong ◽  
Hendrick W. de Haan ◽  
Walter W. Reisner
Keyword(s):  

2014 ◽  
Vol 25 (12) ◽  
pp. 1441010 ◽  
Author(s):  
Farnoush Farahpour ◽  
Mohammad Reza Ejtehadi ◽  
Fathollah Varnik

Stretching dynamics of polymers in microfluidics is of particular interest for polymer scientists. As a charged polymer, a polyelectrolyte (PE) can be deformed from its coiled equilibrium configuration to an extended chain by applying uniform or nonuniform electric fields. By means of hybrid lattice Boltzmann (LB)-molecular dynamics (MD) simulations, we investigate how the condensed counterions (CIs) around the PE contribute to the polymer stretching in inhomogeneous fields. As an application, we discuss the translocation phenomena and entropic traps, when the driving force is an applied external electric field.


2014 ◽  
Vol 8 (4) ◽  
pp. 044103 ◽  
Author(s):  
Lingling Wu ◽  
Stephen Levy
Keyword(s):  

2006 ◽  
Vol 91 (1) ◽  
pp. 189-205 ◽  
Author(s):  
V.A.J. Frolov ◽  
Y.A. Chizmadzhev ◽  
F.S. Cohen ◽  
J. Zimmerberg

Sign in / Sign up

Export Citation Format

Share Document