scholarly journals Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum.

1989 ◽  
Vol 86 (22) ◽  
pp. 8683-8687 ◽  
Author(s):  
A. R. Marks ◽  
P. Tempst ◽  
K. S. Hwang ◽  
M. B. Taubman ◽  
M. Inui ◽  
...  
1999 ◽  
Vol 90 (3) ◽  
pp. 835-843 ◽  
Author(s):  
Hirochika Komai ◽  
Andrew J. Lokuta

Background Although various local anesthetics can cause histologic damage to skeletal muscle when injected intramuscularly, bupivacaine appears to have an exceptionally high rate of myotoxicity. Research has suggested that an effect of bupivacaine on sarcoplasmic reticulum Ca2+ release is involved in its myotoxicity, but direct evidence is lacking. Furthermore, it is not known whether the toxicity depends on the unique chemical characteristics of bupivacaine and whether the toxicity is found only in skeletal muscle. Methods The authors studied the effects of bupivacaine and the similarly lipid-soluble local anesthetic, tetracaine, on the Ca2+ release channel-ryanodine receptor of sarcoplasmic reticulum in swine skeletal and cardiac muscle. [3H]Ryanodine binding was used to measure the activity of the Ca2+ release channel-ryanodine receptors in microsomes of both muscles. Results Bupivacaine enhanced (by two times at 5 mM) and inhibited (66% inhibition at 10 mM) [3H]ryanodine binding to skeletal muscle microsomes. In contrast, only inhibitory effects were observed with cardiac microsomes (about 3 mM for half-maximal inhibition). Tetracaine, which inhibits [3H]ryanodine binding to skeletal muscle microsomes, also inhibited [3H]ryanodine binding to cardiac muscle microsomes (half-maximal inhibition at 99 microM). Conclusions Bupivacaine's ability to enhance Ca2+ release channel-ryanodine receptor activity of skeletal muscle sarcoplasmic reticulum most likely contributes to the myotoxicity of this local anesthetic. Thus, the pronounced myotoxicity of bupivacaine may be the result of this specific effect on Ca2+ release channel-ryanodine receptor superimposed on a nonspecific action on lipid bilayers to increase the Ca2+ permeability of sarcoplasmic reticulum membranes, an effect shared by all local anesthetics. The specific action of tetracaine to inhibit Ca2+ release channel-ryanodine receptor activity may in part counterbalance the nonspecific action, resulting in moderate myotoxicity.


2014 ◽  
Author(s):  
Nicola Fameli ◽  
Oluseye A. Ogunbayo ◽  
Cornelis van Breemen ◽  
A. Mark Evans

We demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions) serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular calcium (Ca2+) waves. In pulmonary artery smooth muscle cells (PASMCs) nicotinic acid adenine dinucleotide phosphate (NAADP) may trigger increases in cytoplasmic Ca2+ via L-SR junctions, in a manner that requires initial Ca2+ release from lysosomes and subsequent Ca2+-induced Ca2+ release (CICR) via ryanodine receptor (RyR) subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be <400 nm and thus beyond the resolution of light microscopy. This study utilizes transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. These junctions are prominent features in these cells and we estimate that the membrane separation and extension are about 15 nm and 300 nm, respectively. We also develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca2+ signal information as input data. Simulations of NAADP-dependent junctional Ca2+ transients show that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca2+ signals and simulated L-SR junctional Ca2+ transients, we estimate that "trigger zones" with a 60-100 junctions are required to confer a signal of similar magnitude. This is compatible with the 130 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca2+] such that there is a failure to breach the threshold for CICR via RyR3. L-SR junctions are therefore a pre-requisite for efficient Ca2+ signal coupling and may contribute to cellular function in health and disease.


2004 ◽  
Vol 286 (4) ◽  
pp. C821-C830 ◽  
Author(s):  
Esther M. Gallant ◽  
James Hart ◽  
Kevin Eager ◽  
Suzanne Curtis ◽  
Angela F. Dulhunty

Enhanced sensitivity to caffeine is part of the standard tests for susceptibility to malignant hyperthermia (MH) in humans and pigs. The caffeine sensitivity of skeletal muscle contraction and Ca2+ release from the sarcoplasmic reticulum is enhanced, but surprisingly, the caffeine sensitivity of purified porcine ryanodine receptor Ca2+-release channels (RyRs) is not affected by the MH mutation (Arg615Cys). In contrast, we show here that native malignant hyperthermic pig RyRs (incorporated into lipid bilayers with RyR-associated lipids and proteins) were activated by caffeine at 100- to 1,000-fold lower concentrations than native normal pig RyRs. In addition, the results show that the mutant ryanodine receptor channels were less sensitive to high-affinity activation by a peptide (CS) that corresponds to a part of the II–III loop of the skeletal dihydropyridine receptor (DHPR). Furthermore, subactivating concentrations of peptide CS enhanced the response of normal pig and rabbit RyRs to caffeine. In contrast, the caffeine sensitivity of MH RyRs was not enhanced by the peptide. These novel results showed that in MH-susceptible pig muscles 1) the caffeine sensitivity of native RyRs was enhanced, 2) the sensitivity of RyRs to a skeletal II–III loop peptide was depressed, and 3) an interaction between the caffeine and peptide CS activation mechanisms seen in normal RyRs was lost.


1995 ◽  
Vol 270 (50) ◽  
pp. 29644-29647 ◽  
Author(s):  
Jonathan J. Abramson ◽  
Anthony C. Zable ◽  
Terence G. Favero ◽  
Guy Salama

Sign in / Sign up

Export Citation Format

Share Document