skeletal muscle contraction
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 35)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Meifu Liang ◽  
Ningning Zhao ◽  
Yamei Li

In order to understand the characteristic data of athletes’ training load, a method based on nine-axis sensor was proposed. Twenty-seven male college athletes were tested twice with a time interval of more than 48 hours. In part 1, participants take the 1 Repetition Maximum (1RM) test. The results show that maximum strength is one of the basic factors to develop the output power of athletes. In the process of skeletal muscle contraction, the curve of speed, force, and power is closely related. When the external load is 10%∼70%, the average power increases with the increase in the average force, it increases with the decrease in the average speed, and at 70%1RM, the average power reaches the peak and then decreases at an inflection point. It is proved that the accurate weight ratio of strength training is the basis of winning athletes, the focus of high level physical coach, and the premise of scientific sports training.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2821
Author(s):  
Seung Yeon Jeong ◽  
Mi Ri Oh ◽  
Jun Hee Choi ◽  
Jin Seok Woo ◽  
Eun Hui Lee

Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6539
Author(s):  
Andreas Ziegl ◽  
Dieter Hayn ◽  
Peter Kastner ◽  
Ester Fabiani ◽  
Boštjan Šimunič ◽  
...  

Frailty and falls are a major public health problem in older adults. Muscle weakness of the lower and upper extremities are risk factors for any, as well as recurrent falls including injuries and fractures. While the Timed Up-and-Go (TUG) test is often used to identify frail members and fallers, tensiomyography (TMG) can be used as a non-invasive tool to assess the function of skeletal muscles. In a clinical study, we evaluated the correlation between the TMG parameters of the skeletal muscle contraction of 23 elderly participants (22 f, age 86.74 ± 7.88) and distance-based TUG test subtask times. TUG tests were recorded with an ultrasonic-based device. The sit-up and walking phases were significantly correlated to the contraction and delay time of the muscle vastus medialis (ρ = 0.55–0.80, p < 0.01). In addition, the delay time of the muscles vastus medialis (ρ = 0.45, p = 0.03) and gastrocnemius medialis (ρ = −0.44, p = 0.04) correlated to the sit-down phase. The maximal radial displacements of the biceps femoris showed significant correlations with the walk-forward times (ρ = −0.47, p = 0.021) and back (ρ = −0.43, p = 0.04). The association of TUG subtasks to muscle contractile parameters, therefore, could be utilized as a measure to improve the monitoring of elderly people’s physical ability in general and during rehabilitation after a fall in particular. TUG test subtask measurements may be used as a proxy to monitor muscle properties in rehabilitation after long hospital stays and injuries or for fall prevention.


2021 ◽  
Vol 22 (18) ◽  
pp. 9889
Author(s):  
Hidetoshi Nara ◽  
Rin Watanabe

Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 424
Author(s):  
Antonio Michelucci ◽  
Chen Liang ◽  
Feliciano Protasi ◽  
Robert T. Dirksen

Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation–contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.


Author(s):  
Venkat Chirasani ◽  
Konstantin Popov ◽  
Gerhard Meissner ◽  
Nikolay Dokholyan

Ryanodine receptor 1 (RyR1) is an intracellular calcium ion (Ca2+) release channel required for skeletal muscle contraction. Although cryo-electron microscopy identified binding sites of three coactivators Ca2+, ATP and caffeine (CFF), the mechanism of co-regulation and synergy of these activators is unknown. Here, we report allosteric connections among the three ligand binding sites and pore region in (i) Ca2+ bound-closed, (ii) ATP/CFF bound- closed, (iii) Ca2+/ATP/CFF bound-closed, and (iv) Ca2+/ATP/CFF bound-open RyR1 states. We identified two dominant interactions that mediate interactions between the Ca2+ binding site and pore region in Ca2+ bound-closed state, which partially overlapped with the pore communications in ATP/CFF bound-closed RyR1 state. In Ca2+/ATP/CFF bound-closed and -open RyR1 states, co-regulatory interactions were analogous to communications in the Ca2+ bound-closed and ATP/CFF bound- closed states. Both ATP- and CFF- binding sites mediate communication between the Ca2+ binding site and the pore region in Ca2+/ATP/CFF bound - open RyR1 structure. We conclude that Ca2+, ATP, and CFF propagate their effects to the pore region through a network of overlapping interactions that mediate allosteric control and molecular synergy in channel regulation.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 815
Author(s):  
Przemysław Domaszewski ◽  
Paweł Pakosz ◽  
Mariusz Konieczny ◽  
Dawid Bączkowicz ◽  
Ewa Sadowska-Krępa

Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.


Author(s):  
Christopher Pignanelli ◽  
Danny Christiansen ◽  
Jamie F. Burr

The manipulation of blood flow in conjunction with skeletal muscle contraction has greatly informed the physiological understanding of muscle fatigue, blood pressure reflexes, and metabolism in humans. Recent interest in using intentional blood flow restriction (BFR) has focused on elucidating how exercise during periods of reduced blood flow affects typical training adaptations. A large initial appeal for BFR-training was driven by studies demonstrating rapid increases in muscle size, strength, and endurance capacity; even when notably low intensities and resistances, that would typically be incapable of stimulating change in healthy populations, were used. The incorporation of BFR-exercise into the training of strength- and endurance-trained athletes has recently been shown to provide additive training effects that augment skeletal muscle and cardiovascular adaptations. Recent observations suggest BFR-exercise alters acute physiological stressors such as local muscle oxygen availability and vascular shear-stress, which may lead to adaptations that are not easily attained with conventional training. This review explores these concepts and summarizes both the evidence-base and knowledge gaps regarding the application of BFR-training for athletes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina Mazzoli ◽  
Kevin Moulin ◽  
Feliks Kogan ◽  
Brian A. Hargreaves ◽  
Garry E. Gold

Diffusion tensor imaging (DTI) measures water diffusion in skeletal muscle tissue and allows for muscle assessment in a broad range of neuromuscular diseases. However, current DTI measurements, typically performed using pulsed gradient spin echo (PGSE) diffusion encoding, are limited to the assessment of non-contracted musculature, therefore providing limited insight into muscle contraction mechanisms and contraction abnormalities. In this study, we propose the use of an oscillating gradient spin echo (OGSE) diffusion encoding strategy for DTI measurements to mitigate the effect of signal voids in contracted muscle and to obtain reliable diffusivity values. Two OGSE sequences with encoding frequencies of 25 and 50 Hz were tested in the lower leg of five healthy volunteers with relaxed musculature and during active dorsiflexion and plantarflexion, and compared with a conventional PGSE approach. A significant reduction of areas of signal voids using OGSE compared with PGSE was observed in the tibialis anterior for the scans obtained in active dorsiflexion and in the soleus during active plantarflexion. The use of PGSE sequences led to unrealistically elevated axial diffusivity values in the tibialis anterior during dorsiflexion and in the soleus during plantarflexion, while the corresponding values obtained using the OGSE sequences were significantly reduced. Similar findings were seen for radial diffusivity, with significantly higher diffusivity measured in plantarflexion in the soleus muscle using the PGSE sequence. Our preliminary results indicate that DTI with OGSE diffusion encoding is feasible in human musculature and allows to quantitatively assess diffusion properties in actively contracting skeletal muscle. OGSE holds great potential to assess microstructural changes occurring in the skeletal muscle during contraction, and for non-invasive assessment of contraction abnormalities in patients with muscle diseases.


Sign in / Sign up

Export Citation Format

Share Document