scholarly journals Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin

2000 ◽  
Vol 97 (19) ◽  
pp. 10365-10370 ◽  
Author(s):  
Z. Shriver ◽  
M. Sundaram ◽  
G. Venkataraman ◽  
J. Fareed ◽  
R. Linhardt ◽  
...  
2018 ◽  
Vol 107 (5) ◽  
pp. 1290-1295 ◽  
Author(s):  
Yin Chen ◽  
Jing Zhao ◽  
Yanlei Yu ◽  
Xinyue Liu ◽  
Lei Lin ◽  
...  

1983 ◽  
Vol 49 (02) ◽  
pp. 109-115 ◽  
Author(s):  
M Hoylaerts ◽  
E Holmer ◽  
M de Mol ◽  
D Collen

SummaryTwo high affinity heparin fragments (A/r 4,300 and M, 3,200) were covalently coupled to antithrombin III (J. Biol. Chem. 1982; 257: 3401-3408) with an apparent 1:1 stoichiometry and a 30-35% yield.The purified covalent complexes inhibited factor Xa with second order rate constants very similar to those obtained for antithrombin III saturated with these heparin fragments and to that obtained for the covalent complex between antithrombin III and native high affinity heparin.The disappearance rates from plasma in rabbits of both low molecular weight heparin fragments and their complexes could adequately be represented by two-compartment mammillary models. The plasma half-life (t'/j) of both low Afr-heparin fragments was approximately 2.4 hr. Covalent coupling of the fragments to antithrombin III increased this half-life about 3.5 fold (t1/2 ≃ 7.7 hr), approaching that of free antithrombin III (t1/2 ≃ 11 ± 0.4 hr) and resulting in a 30fold longer life time of factor Xa inhibitory activity in plasma as compared to that of free intact heparin (t1/2 ≃ 0.25 ± 0.04 hr).


1987 ◽  
Author(s):  
K Takahashi ◽  
M Niwa ◽  
N Sakuragawa

Purpose: Low molecular weight(LMW) heparin shows stronger antifactor Xa(F-Xa) and weaker anti-thrombin(TH) activities compared with unfractionated(UF) heparin, and shows less bleeding tendency in the cases of clinical use. Platelet factor 4(Pf-4) and histidine-rich glycoprotein(HRG) neutralize heparin. We investigated on the heparin neutralizing effects of them to both kinds of heparinMaterials and methods: LMW heparin(Kabi and Pharmuka) and UF heparin(Novo) were used. Antithrombin III(AT-III), HRG(human origin ) and pf-4( bovine origin ) were purified by our methodsTH(Green-Cross) and F-Xa(Sigma) were used. Reaction mixtures for anti-TH or anti-F-Xa were as follows: 1 vol of AT-III( 0.1 U/ml)+ 1 vol of heparin( 10 ug/ml)+l vol of pf-4 or HRG(varied)→incubated for 5 min→+l vol of TH(5 U/ml) or F-Xa( 7 nKat/ml)→incubated for 5 min→ + S-2238 or S-2222→ recorded at 405 nm.Results: (1) Pf-4 showed the equivalent anti-TH effect on both kinds of heparin, and 3 ug of pf-4 neutralized 1 ug of heparinOn F-Xa neutralizing effect, 13 ug of pf-4 neutralized 1 ug of UF heparin, but could not neutralize LMW heparin. (2) HRG showed the same results on anti-TH effect of both kinds of heparin, but could not neutralize the anti-F-Xa effect of LMW heparin on the same amount of HRG which neutralized that of UF heparin. Conclusion: Anti-F-Xa effect of. LMW heparin could not be easily neutralized by pf-4 or HRG compared with that of UF heparin.


1995 ◽  
Vol 80 (5) ◽  
pp. 391-398 ◽  
Author(s):  
Shigeki Tazawa ◽  
Kiyoshi Ichikawa ◽  
Keiko Misawa ◽  
Juichi Fukuyama ◽  
Shuichiro Hamano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document