covalent complex
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 18)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sladjana Slavkovic ◽  
Aron A. Shoara ◽  
Zachary R. Churcher ◽  
Elise Daems ◽  
Karolien de Wael ◽  
...  

AbstractArtemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1915
Author(s):  
Vladislav S. Rybchenko ◽  
Anna A. Panina ◽  
Teimur K. Aliev ◽  
Olga N. Solopova ◽  
Dmitry S. Balabashin ◽  
...  

The main aim of our work was to create a full-length bispecific antibody (BsAb) as a vehicle for the targeted delivery of interferon-beta (IFN-β) to ErbB2+ tumor cells in the form of non-covalent complex of BsAb and IFN-β. Such a construct is a CrossMab-type BsAb, consisting of an ErbB2-recognizing trastuzumab moiety, a part of chimeric antibody to IFN-β, and human IgG1 Fc domain carrying knob-into-hole amino acid substitutions necessary for the proper assembly of bispecific molecules. The IFN-β- recognizing arm of BsAb not only forms a complex with the cytokine but neutralizes its activity, thus providing a mechanism to avoid the side effects of the systemic action of IFN-β by blocking IFN-β Interaction with cell receptors in the process of cytokine delivery to tumor sites. Enzyme sandwich immunoassay confirmed the ability of BsAb to bind to human IFN-β comparable to that of the parental chimeric mAb. The BsAb binds to the recombinant ErbB2 receptor, as well as to lysates of ErbB2+ tumor cell lines. The inhibition of the antiproliferative effect of IFN-β by BsAb (IC50 = 49,3 µg/mL) was demonstrated on the HT29 cell line. It can be proposed that the BsAb obtained can serve as a component of the immunocytokine complex for the delivery of IFN-β to ErbB2-associated tumor cells.


2021 ◽  
Author(s):  
Ahmed Seddek ◽  
Christian Madeira ◽  
Thirunavukkarasu Annamalai ◽  
Christopher Mederos ◽  
Purushottam B. Tiwari ◽  
...  

Inhibition of human topoisomerase I (TOP1) by camptothecin and topotecan has been shown to reduce excessive transcription of PAMP (Pathogen-Associated Molecular Pattern) -induced genes in prior studies, preventing death from sepsis in animal models of bacterial and SARS-CoV-2 infections. The TOP1 catalytic activity likely resolves the topological constraints on DNA that encodes these genes to facilitate the transcription induction that leads to excess inflammation. The increased accumulation of TOP1 covalent complex (TOP1cc) following DNA cleavage is the basis for the anticancer efficacy of the TOP1 poison inhibitors developed for anticancer treatment. The potential cytotoxicity and mutagenicity of TOP1 targeting cancer drugs pose serious concerns for employing them as therapies in sepsis prevention. The aim of this study is to develop a novel yeast-based screening system that employs yeast strains expressing wild-type or a dominant lethal mutant recombinant human TOP1. This yeast-based screening system can identify human TOP1 poison inhibitors for anticancer efficacy as well as catalytic inhibitors that can inhibit TOP1 DNA binding or cleavage activity in steps prior to the formation of the TOP1cc. In addition to distinguishing between such TOP1 catalytic inhibitors and TOP1 poison inhibitors, results from this yeast-based screening system will also allow elimination of compounds that are likely to be cytotoxic based on their effect on yeast cell growth that is independent of recombinant human TOP1 overexpression.


Author(s):  
Akimasa Miyanaga ◽  
Risako Ouchi ◽  
Fumitaka Kudo ◽  
Tadashi Eguchi

Acyltransferases are responsible for the selection and loading of acyl units onto carrier proteins in polyketide and fatty-acid biosynthesis. Despite the importance of protein–protein interactions between the acyltransferase and the carrier protein, structural information on acyltransferase–carrier protein interactions is limited because of the transient interactions between them. In the biosynthesis of the polyketide vicenistatin, the acyltransferase VinK recognizes the carrier protein VinL for the transfer of a dipeptidyl unit. The crystal structure of a VinK–VinL covalent complex formed with a 1,2-bismaleimidoethane cross-linking reagent has been determined previously. Here, the crystal structure of a VinK–VinL covalent complex formed with a pantetheine cross-linking probe is reported at 1.95 Å resolution. In the structure of the VinK–VinL–probe complex, the pantetheine probe that is attached to VinL is covalently connected to the side chain of the mutated Cys106 of VinK. The interaction interface between VinK and VinL is essentially the same in the two VinK–VinL complex structures, although the position of the pantetheine linker slightly differs. This structural observation suggests that interface interactions are not affected by the cross-linking strategy used.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Purushottam B. Tiwari ◽  
Prem P. Chapagain ◽  
Ahmed Seddek ◽  
Thirunavukkarasu Annamalai ◽  
Aykut Üren ◽  
...  

Author(s):  
Natalia A. Lebedeva ◽  
Nadejda I. Rechkunova ◽  
Anton V. Endutkin ◽  
Olga I. Lavrik

Bifunctional 8-oxoguanine-DNA glycosylase (OGG1), a crucial DNA-repair enzyme, removes from DNA 8-oxo-7,8-dihydroguanine (8-oxoG) with following cleavage of the arising apurinic/apyrimidinic (AP) site. The major enzyme in eukaryotic cells that catalyzes the cleavage of AP sites is AP endonuclease 1 (APE1). Alternatively, AP sites can be cleaved by tyrosyl-DNA phosphodiesterase 1 (TDP1) to initiate APE1-independent repair, thus expanding the ability of the base excision repair (BER) process. Poly(ADP-ribose) polymerase 1 (PARP1) is a regulatory protein of DNA repair. PARP2 is also activated in response to DNA damage and can be regarded as the BER participant. Here we analyze PARP1 and PARP2 interactions with DNA intermediates of the initial stages of the BER process (8-oxoG and AP-site containing DNA) and their interplay with the proteins recognizing and processing these DNA structures focusing on OGG1. OGG1 as well as PARP1 and PARP2 form covalent complex with AP site-containing DNA without borohydride reduction. AP site incision by APE1 or TDP1 removal of protein adducts but not proteins’ PARylation prevent DNA-protein crosslinks.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0240497
Author(s):  
Célia de Sousa-d’Auria ◽  
Florence Constantinesco-Becker ◽  
Patricia Constant ◽  
Maryelle Tropis ◽  
Christine Houssin

Corynebacteriales are Actinobacteria that possess an atypical didermic cell envelope. One of the principal features of this cell envelope is the presence of a large complex made up of peptidoglycan, arabinogalactan and mycolic acids. This covalent complex constitutes the backbone of the cell wall and supports an outer membrane, called mycomembrane in reference to the mycolic acids that are its major component. The biosynthesis of the cell envelope of Corynebacteriales has been extensively studied, in particular because it is crucial for the survival of important pathogens such as Mycobacterium tuberculosis and is therefore a key target for anti-tuberculosis drugs. In this study, we explore the biogenesis of the cell envelope of Corynebacterium glutamicum, a non-pathogenic Corynebacteriales, which can tolerate dramatic modifications of its cell envelope as important as the loss of its mycomembrane. For this purpose, we used a genetic approach based on genome-wide transposon mutagenesis. We developed a highly effective immunological test based on the use of anti-cell wall antibodies that allowed us to rapidly identify bacteria exhibiting an altered cell envelope. A very large number (10,073) of insertional mutants were screened by means of this test, and 80 were finally selected, representing 55 different loci. Bioinformatics analyses of these loci showed that approximately 60% corresponded to genes already characterized, 63% of which are known to be directly involved in cell wall processes, and more specifically in the biosynthesis of the mycoloyl-arabinogalactan-peptidoglycan complex. We identified 22 new loci potentially involved in cell envelope biogenesis, 76% of which encode putative cell envelope proteins. A mutant of particular interest was further characterized and revealed a new player in mycolic acid metabolism. Because a large proportion of the genes identified by our study is conserved in Corynebacteriales, the library described here provides a new resource of genes whose characterization could lead to a better understanding of the biosynthesis of the envelope components of these bacteria.


Sign in / Sign up

Export Citation Format

Share Document