scholarly journals Transgenic Analyses Reveal Developmentally Regulated Neuron- and Muscle-specific Elements in the Murine Neurofilament Light Chain Gene Promoter

1997 ◽  
Vol 272 (40) ◽  
pp. 25112-25120 ◽  
Author(s):  
Paul J. Yaworsky ◽  
David P. Gardner ◽  
Claudia Kappen
1993 ◽  
Vol 21 (3) ◽  
pp. 455-461 ◽  
Author(s):  
Karma Yazdanbakhsh ◽  
Peter Fraser ◽  
Dimitris Kioussis ◽  
Miguel Vidal ◽  
Frank Grosveld ◽  
...  

Neurogenetics ◽  
2005 ◽  
Vol 6 (1) ◽  
pp. 49-50 ◽  
Author(s):  
Cinzia Andrigo ◽  
Chiara Boito ◽  
Paola Prandini ◽  
Maria Luisa Mostacciuolo ◽  
Gabriele Siciliano ◽  
...  

2021 ◽  
Author(s):  
Carissa M. Feliciano ◽  
Kenneth Wu ◽  
Hannah L. Watry ◽  
Chiara B.E. Marley ◽  
Gokul N. Ramadoss ◽  
...  

Many neuromuscular disorders are caused by dominant missense mutations that lead to dominant-negative or gain-of-function pathology. This category of disease is challenging to address via drug treatment or gene augmentation therapy because these strategies may not eliminate the effects of the mutant protein or RNA. Thus, effective treatments are severely lacking for these dominant diseases, which often cause severe disability or death. The targeted inactivation of dominant disease alleles by gene editing is a promising approach with the potential to completely remove the cause of pathology with a single treatment. Here, we demonstrate that allele-specific CRISPR gene editing in a human model of axonal Charcot-Marie-Tooth (CMT) disease rescues pathology caused by a dominant missense mutation in the neurofilament light chain gene (NEFL, CMT type 2E). We utilized a rapid and efficient method for generating spinal motor neurons from human induced pluripotent stem cells (iPSCs) derived from a patient with CMT2E. Diseased motor neurons recapitulated known pathologic phenotypes at early time points of differentiation, including aberrant accumulation of neurofilament light chain protein in neuronal cell bodies. We selectively inactivated the disease NEFL allele in patient iPSCs using Cas9 enzymes to introduce a frameshift at the pathogenic N98S mutation. Motor neurons carrying this allele-specific frameshift demonstrated an amelioration of the disease phenotype comparable to that seen in an isogenic control with precise correction of the mutation. Our results validate allele-specific gene editing as a therapeutic approach for CMT2E and as a promising strategy to silence dominant mutations in any gene for which heterozygous loss-of-function is well tolerated. This highlights the potential for gene editing as a therapy for currently untreatable dominant neurologic diseases.


Author(s):  
Sri K. Diah ◽  
James F. Padbury ◽  
William A. Campbell ◽  
Deborah Britt ◽  
Nancy L. Thompson

1989 ◽  
Vol 17 (18) ◽  
pp. 7403-7415 ◽  
Author(s):  
Michele Goodhardt ◽  
Charles Babinet ◽  
Georges Lutfalla ◽  
Sacha Kallenbach ◽  
Patricia Caveher ◽  
...  

2003 ◽  
Vol 197 (9) ◽  
pp. 1165-1172 ◽  
Author(s):  
Philipp Oberdoerffer ◽  
Tatiana I. Novobrantseva ◽  
Klaus Rajewsky

Immunoglobulin light chain (IgL) rearrangements occur more frequently at Igκ than at Igλ. Previous results suggested that the unrearranged Igκ locus negatively regulates Igλ transcription and/or rearrangement. Here, we demonstrate that expression of a VJλ1-joint inserted into its physiological position in the Igλ locus is independent of Igκ rearrangements. Expression of the inserted VJλ1 gene segment is developmentally controlled like that of a VJκ-joint inserted into the Igκ locus and furthermore coincides developmentally with the occurrence of Igκ rearrangements in wild-type mice. We conclude that developmentally controlled transcription of a gene rearrangement in the Igλ locus occurs in the presence of an unrearranged Igκ locus and is therefore not negatively regulated by the latter. Our data also indicate light chain editing in ∼30% of λ1 expressing B cell progenitors.


Sign in / Sign up

Export Citation Format

Share Document