scholarly journals A 37-Amino Acid Sequence in the Skeletal Muscle Ryanodine Receptor Interacts with the Cytoplasmic Loop between Domains II and III in the Skeletal Muscle Dihydropyridine Receptor

1998 ◽  
Vol 273 (14) ◽  
pp. 7791-7794 ◽  
Author(s):  
Peng Leong ◽  
David H. MacLennan
1997 ◽  
Vol 42 (11) ◽  
pp. 952-956 ◽  
Author(s):  
Yonghua Ji ◽  
Yan Liu ◽  
Ke Xu ◽  
Takahide Ohishi ◽  
Tohru Mochizuki ◽  
...  

1986 ◽  
Vol 236 (1) ◽  
pp. 115-126 ◽  
Author(s):  
G A Russell ◽  
B Dunbar ◽  
L A Fothergill-Gilmore

The complete amino acid sequence of chicken skeletal-muscle enolase, comprising 433 residues, was determined. The sequence was deduced by automated sequencing of hydroxylamine-cleavage, CNBr-cleavage, o-iodosobenzoic acid-cleavage, clostripain-digest and staphylococcal-proteinase-digest fragments. The presence of several acid-labile peptide bonds and the tenacious aggregation of most CNBr-cleavage fragments meant that a commonly used sequencing strategy involving initial CNBr cleavage was unproductive. Cleavage at the single Asn-Gly peptide bond with hydroxylamine proved to be particularly useful. Comparison of the sequence of chicken enolase with the two yeast enolase isoenzyme sequences shows that the enzyme is strongly conserved, with 60% of the residues identical. The histidine and arginine residues implicated as being important for the activity of yeast enolase are conserved in the chicken enzyme. Secondary-structure predictions are analysed in an accompanying paper [Sawyer, Fothergill-Gilmore & Russell (1986) Biochem. J. 236, 127-130].


1985 ◽  
Vol 97 (4) ◽  
pp. 1155-1161 ◽  
Author(s):  
Takako KIZAKI ◽  
Toshihide TAKASAWA ◽  
Yusuke MIZUNO ◽  
Hiroyuki SHIOKAWA

2019 ◽  
Vol 317 (2) ◽  
pp. C358-C365 ◽  
Author(s):  
Venkat R. Chirasani ◽  
Le Xu ◽  
Hannah G. Addis ◽  
Daniel A. Pasek ◽  
Nikolay V. Dokholyan ◽  
...  

Cryoelectron microscopy and mutational analyses have shown that type 1 ryanodine receptor (RyR1) amino acid residues RyR1-E3893, -E3967, and -T5001 are critical for Ca2+-mediated activation of skeletal muscle Ca2+ release channel. De novo missense mutation RyR1-Q3970K in the secondary binding sphere of Ca2+ was reported in association with central core disease (CCD) in a 2-yr-old boy. Here, we characterized recombinant RyR1-Q3970K mutant by cellular Ca2+ release measurements, single-channel recordings, and computational methods. Caffeine-induced Ca2+ release studies indicated that RyR1-Q3970K formed caffeine-sensitive, Ca2+-conducting channel in HEK293 cells. However, in single-channel recordings, RyR1-Q3970K displayed low Ca2+-dependent channel activity and greatly reduced activation by caffeine or ATP. A RyR1-Q3970E mutant corresponds to missense mutation RyR2-Q3925E associated with arrhythmogenic syndrome in cardiac muscle. RyR1-Q3970E also formed caffeine-induced Ca2+ release in HEK293 cells and exhibited low activity in the presence of the activating ligand Ca2+ but, in contrast to RyR1-Q3970K, was activated by ATP and caffeine in single-channel recordings. Computational analyses suggested distinct structural rearrangements in the secondary binding sphere of Ca2+ of the two mutants, whereas the interaction of Ca2+ with directly interacting RyR1 amino acid residues Glu3893, Glu3967, and Thr5001 was only minimally affected. We conclude that RyR1-Q3970 has a critical role in Ca2+-dependent activation of RyR1 and that a missense RyR1-Q3970K mutant may give rise to myopathy in skeletal muscle.


1997 ◽  
Vol 324 (2) ◽  
pp. 689-696 ◽  
Author(s):  
Brendan E. MURRAY ◽  
Kay OHLENDIECK

In mature skeletal muscle, excitation–contraction (EC) coupling is thought to be mediated by direct physical interactions between the transverse tubular, voltage-sensing dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR) Ca2+ release channel of the sarcoplasmic reticulum (SR). Although previous attempts at demonstrating interactions between purified RyR and α1-DHPR have failed, the cross-linking analysis shown here indicates low-level complex formation between the SR RyR and the junctional α1-DHPR. After cross-linking of membranes highly enriched in triads with dithiobis-succinimidyl propionate, distinct complexes of more than 3000 kDa were detected. This agrees with numerous physiological and electron-microscopic findings, as well as co-immunoprecipitation experiments with triad receptors and receptor domain-binding studies. However, a distinct overlap of immunoreactivity between receptors was not observed in crude microsomal preparations, indicating that the triad complex is probably of low abundance. Disulphide-bonded, high-molecular-mass clusters of triadin, the junctional protein proposed to mediate interactions in triads, were confirmed to be linked to the RyR. Calsequestrin and the SR Ca2+-ATPase were not found in cross-linked complexes of the RyR and α1-DHPR. Thus, whereas recent studies indicate that the two receptors exhibit temporal differences in their developmental inductions and that receptor interactions are not essential for the formation and maintenance of triads, this study supports the signal transduction hypothesis of direct physical interactions between triad receptors in adult skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document