scholarly journals GC- and E-box Motifs as Regulatory Elements in the Proximal Promoter Region of the Neuronal Nicotinic Receptor α7 Subunit Gene

1998 ◽  
Vol 273 (32) ◽  
pp. 20021-20028 ◽  
Author(s):  
Carmen Carrasco-Serrano ◽  
Antonio Campos-Caro ◽  
Salvador Viniegra ◽  
Juan J. Ballesta ◽  
Manuel Criado
2008 ◽  
Vol 295 (1) ◽  
pp. F165-F170 ◽  
Author(s):  
Masayo Aoki ◽  
Tomohiro Terada ◽  
Moto Kajiwara ◽  
Ken Ogasawara ◽  
Iwao Ikai ◽  
...  

Human organic cation transporter 2 (OCT2/SLC22A2), which is specifically expressed in the kidney, plays critical roles in the renal secretion of cationic compounds. Tissue expression and membrane localization of OCT2 are closely related to the tissue distribution, pharmacological effects, and/or adverse effects of its substrate drugs. However, the molecular mechanisms underlying the kidney-specific expression of OCT2 have not been elucidated. In the present study, therefore, we examined the contribution of DNA methylation of the promoter region for the OCT2 gene to its tissue-specific expression using human tissue samples. In vivo methylation status of the proximal promoter region of OCT2 and that of OCT1, a liver-specific organic cation transporter, were investigated by bisulfite sequencing using human genomic DNA extracted from the kidney and liver. All CpG sites in the OCT2 proximal promoter were hypermethylated in the liver, while hypomethylated in the kidney. On the other hand, the promoter region of OCT1 was hypermethylated in both the kidney and liver. The level of methylation of the OCT2 promoter was especially low at the CpG site in the E-box, the binding site of the basal transcription factor upstream stimulating factor (USF) 1. In vitro methylation of the OCT2 proximal promoter dramatically reduced the transcriptional activity, and an electrophoretic mobility shift assay showed that methylation at the E-box inhibited the binding of USF1. These results indicate that kidney-specific expression of human OCT2 is regulated by methylation of the proximal promoter region, interfering with the transactivation by USF1.


1999 ◽  
Vol 274 (8) ◽  
pp. 4693-4701 ◽  
Author(s):  
Antonio Campos-Caro ◽  
Carmen Carrasco-Serrano ◽  
Luis M. Valor ◽  
Salvador Viniegra ◽  
Juan J. Ballesta ◽  
...  

1992 ◽  
Vol 20 (5) ◽  
pp. 1061-1068 ◽  
Author(s):  
Valerie Rossi ◽  
Jean Francois Rouayrenc ◽  
Laurent Paquereau ◽  
Marie Joseé Vilarem ◽  
Alphonse Le Cam

2004 ◽  
Vol 287 (3) ◽  
pp. F460-F468 ◽  
Author(s):  
Christie P. Thomas ◽  
Randy W. Loftus ◽  
Kang Z. Liu

VIT32, a vasopressin-induced transcript, inhibits Na+ transport when coexpressed with the epithelial sodium channel in Xenopus laevis oocytes ( EMBO J 21: 5109–5117, 2002). To understand the mechanism of VIT32 gene regulation, we examined the effect of DDAVP and cAMP stimulation on VIT32 expression in M-1 mouse collecting duct cells and in H441 human airway epithelial cells. Elevation of cAMP with forskolin and IBMX increased VIT32 gene expression with a peak effect at 2 h. The increase in gene expression was abolished by H89 and by actinomycin D, suggesting that cAMP stimulates VIT32 mRNA expression by a PKA-mediated increase in gene transcription. An ∼1.5-kb fragment of the 5′-flanking region of VIT32 was cloned and was able to confer cAMP-stimulated reporter gene activity when transfected into M-1 and H441 cells. By deletion analysis and site-directed mutagenesis, a cAMP response element (CRE) was identified within the proximal promoter region that was sufficient to account for the increase in VIT32 gene expression seen with DDAVP and elevation of cAMP. Furthermore, DDAVP-stimulated VIT32 promoter-reporter activity was inhibited by H89 and by a dominant negative CREB construct. Finally, we were able to identify CREB as a nuclear protein that bound to the VIT32 CRE in gel mobility shift assays. In summary, DDAVP stimulates transcription of VIT32 via a CRE within the proximal promoter region of the VIT32 gene.


Sign in / Sign up

Export Citation Format

Share Document