repressor element
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Cosimo Prestigio ◽  
Daniele Ferrante ◽  
Antonella Marte ◽  
Alessandra Romei ◽  
Gabriele Lignani ◽  
...  

ABSTRACTThe repressor-element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) controls hundreds of neuron specific genes. We showed that REST/NRSF downregulates glutamatergic transmission in response to hyperactivity, thus contributing to neuronal homeostasis. However, whether GABAergic transmission is also implicated in the homeostatic action of REST/NRSF is unknown. Here, we show that hyperactivity-induced REST/NRSF activation triggers a homeostatic enhancement of GABAergic inhibition, with increased frequency of miniature inhibitory postsynaptic currents (IPSCs) and amplitude of evoked IPSCs. Notably, this effect was only observed at inhibitory-onto-excitatory neuron synapses, whose density increased at perisomatic sites, demonstrating a strict target-selectivity. These effects were occluded by TrkB receptor inhibition and resulted from a coordinated and sequential activation of the Npas4 and BDNF gene programs. The findings highlight the central role of REST/NRSF in the complex transcriptional responses aimed at preserving physiological levels of neuronal activity in front of the ever-changing environment.Impact StatementThis work elucidates the mechanisms by which the transcriptional regulator REST/NRSF selectively upregulates GABAergic transmission onto excitatory neurons in response to hyperactivity to rescue neuronal homeostasis.


2021 ◽  
Author(s):  
Yuanxiao Tang ◽  
Zhilian Jia ◽  
Honglin Xu ◽  
Lin-tai Da ◽  
Qiang Wu

Abstract Repressor element-1 silencing transcription factor (REST) or neuron-restrictive silencer factor (NRSF) is a zinc-finger (ZF) containing transcriptional repressor that recognizes thousands of neuron-restrictive silencer elements (NRSEs) in mammalian genomes. How REST/NRSF regulates gene expression remains incompletely understood. Here, we investigate the binding pattern and regulation mechanism of REST/NRSF in the clustered protocadherin (PCDH) genes. We find that REST/NRSF directionally forms base-specific interactions with NRSEs via tandem ZFs in an anti-parallel manner but with striking conformational changes. In addition, REST/NRSF recruitment to the HS5–1 enhancer leads to the decrease of long-range enhancer-promoter interactions and downregulation of the clustered PCDHα genes. Thus, REST/NRSF represses PCDHα gene expression through directional binding to a repertoire of NRSEs within the distal enhancer and variable target genes.


Author(s):  
Ruth Butler-Ryan ◽  
Ian C. Wood

AbstractEpilepsy is a debilitating neurological disorder characterised by recurrent seizures for which 30% of patients are refractory to current treatments. The genetic and molecular aetiologies behind epilepsy are under investigation with the goal of developing new epilepsy medications. The transcriptional repressor REST (Repressor Element 1-Silencing Transcription factor) is a focus of interest as it is consistently upregulated in epilepsy patients and following brain insult in animal models of epilepsy and ischemia. This review analyses data from different epilepsy models and discusses the contribution of REST to epileptogenesis. We propose that in healthy brains REST acts in a protective manner to homeostatically downregulate increases in excitability, to protect against seizure through downregulation of BDNF (Brain-Derived Neurotrophic Factor) and its receptor, TrkB (Tropomyosin receptor kinase B). However, in epilepsy patients and post-seizure, REST may increase to a larger degree, which allows downregulation of the glutamate receptor subunit GluR2. This leads to AMPA glutamate receptors lacking GluR2 subunits, which have increased permeability to Ca2+, causing excitotoxicity, cell death and seizure. This concept highlights therapeutic potential of REST modulation through gene therapy in epilepsy patients.


2021 ◽  
Author(s):  
Ashley S Cloud ◽  
Aditya M Vargheese ◽  
Sumedha Gunewardena ◽  
Raeann M Shimak ◽  
Sornakala Ganeshkumar ◽  
...  

Abstract Background: Breast cancer is the most common malignancy in women, and is both pathologically and genetically heterogeneous, making early detection and treatment difficult. A subset of breast cancers express normal levels of REST (repressor element 1 silencing transcription factor) mRNA but lack functional REST protein. Loss of REST function is seen in ~20% of breast cancers and is associated with a more aggressive phenotype and poor prognosis. Despite the frequent loss of REST, little is known about the role of REST in the molecular pathogenesis of breast cancer.Methods: TCGA data was analyzed for the expression of REST target genes in breast cancer patient samples. We then utilized gene knockdown in MCF-7 cells in the presence or absence of steroid hormones estrogen and/ progesterone followed by RNA sequencing, as well as chromatin immunoprecipitation and PCR in an attempt to understand the tumor suppressor role of REST in breast cancer. Results: We show that REST directly regulates CEMIP (cell migration-inducing and hyaluronan-binding protein, KIAA1199) and MMP24 (matrix metallopeptidase 24), genes known to have roles in invasion and metastasis. REST knockdown in breast cancer cells leads to significant upregulation of CEMIP and MMP24. In addition, we found REST binds to RE-1 sites (repressor element-1) within the genes and influences their transcription. Furthermore, we found that the estrogen receptor (ESR1) signaling pathway is activated in the absence of REST, regardless of hormone treatment.Conclusions: We demonstrate a critical role for the loss of REST in aggressive breast cancer pathogenesis and provide evidence for REST as an important diagnostic marker for personalized treatment plans.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tomoko Soga ◽  
Shingo Nakajima ◽  
Ishwar S. Parhar

Repressor element-1 silencing transcription factor (REST) is highly expressed in the dorsal raphe where serotonin (5-hydroxytryptamine, 5-HT) neurons are located. REST works as a transcription factor for the 5-HT receptor and tryptophan hydroxylase two-gene expression. We hypothesized that REST is co-expressed in 5-HT neurons, which, if demonstrated, would be useful to understand the mechanism of 5-HT dysfunction-related disorders such as negative emotions and depression. Therefore, the present study was designed to examine the expression of the REST gene in the brain (forebrain, midbrain, and hindbrain) of adult male Nile tilapia (Oreochromis niloticus) using rt-PCR. Besides, using immunocytochemistry, co-localization of the REST gene was examined in 5-HT neurons and with neuronal-/glial-cell markers. We found a high expression of the REST gene in the midbrain region of the dorsal raphe, an area of 5-HT neurons. Double-label immunocytochemistry showed neuron-specific expression of REST co-localized in 5-HT neurons in the dorsal and ventral parts of the periventricular pretectal nucleus, paraventricular organ, and dorsal and medial raphe nucleus. Since midbrain 5-HT neurons express REST, we speculate that REST may control 5-HT neuronal activity related to negative emotions, including depression.


2021 ◽  
Author(s):  
Yuanxiao Tang ◽  
Zhilian Jia ◽  
Honglin Xu ◽  
Lin-Tai Da ◽  
Qiang Wu

ABSTRACTRepressor element-1 silencing transcription factor (REST) or neuron-restrictive silencer factor (NRSF) is a zinc-finger (ZF) containing transcriptional repressor that recognizes thousands of neuron-restrictive silencer elements (NRSEs) in mammalian genomes. How REST/NRSF regulates gene expression remains incompletely understood. Here, we investigate the binding pattern and regulation mechanism of REST/NRSF in the clustered protocadherin (PCDH) genes. We find that REST/NRSF directionally forms base-specific interactions with NRSEs via tandem ZFs in an anti-parallel manner but with striking conformational changes. In addition, REST/NRSF recruitment to the HS5-1 enhancer leads to the decrease of long-range enhancer-promoter interactions and downregulation of the clustered PCDHα genes. Thus, REST/NRSF represses PCDHα gene expression through directional binding to a repertoire of NRSEs within the distal enhancer and variable target genes.


2021 ◽  
Vol 22 (5) ◽  
pp. 2323
Author(s):  
Masamitsu Harada ◽  
Jun Nagai ◽  
Riho Kurata ◽  
Xiaofeng Cui ◽  
Takayuki Isagawa ◽  
...  

Repressor element-1 (RE-1) or neural restrictive silencer element (NRSE) bound with a zinc finger transcription repressor, RE-1 silencing transcription factor (REST, also known as neural restrictive silencer factor, NRSF) has been identified as a fundamental repressor element in many genes, including neuronal genes. Genes regulated by REST/NRSF regulate multifaceted neuronal phenotypes, and their defects in the machinery cause neuropathies, disorders of neuron activity), autism and so on. In REST repressions, the N-terminal repressor domain recruits Sin3B via its paired amphipathic helix 1 (PAH1) domain, which plays an important role as a scaffold for histone deacetylase 1 and 2. This machinery has a critical role in maintaining neuronal robustness. In this study, in order to establish protein–protein interaction assays mimicking a binding surface between Sin3B and REST, we selected important amino acids from structural information of the PAH1/REST complex and then tried to reconstitute it using recombinant short peptides derived from PAH1/REST. Initially, we validated whether biotinylated REST interacts with glutathione S-transferase (GST)-tagged PAH1 and whether another PAH1 peptide (PAH1-FLAG) competitively binds with biotinylated REST using surface plasmon resonance (SPR). We observed a direct interaction and competitive binding of two PAH1 peptides. Secondly, in order to establish a high-throughput and high-dynamic-range assay, we utilized an easily performed novel time-resolved fluorescence energy transfer (TR-FRET) assay, and closely monitored this interaction. Finally, we succeeded in establishing a novel high-quality TR-FRET assay and a novel interaction assay based on SPR.


2021 ◽  
Author(s):  
Mingqing Wei ◽  
Jingnian Ni ◽  
Jing Shi ◽  
Ting Li ◽  
Xiaoqing Xu ◽  
...  

Abstract Background: Repressor element 1-silencing transcription/neuron-restrictive silencer factor (REST) was considered as a new therapeutic target for neurodegenerative disorders like Alzheimer’s disease (AD). However, the relationships between AD and REST remain unclear. This study aimed to 1) examine plasma REST levels and REST gene AD patients, and 2) further explore the pathological relationships between REST protein levels and cognition decline in clinic, including medial temporal-lobe atrophy. Methods: Subjects (n=252, mean age 68.95±8.78 years old) were recruited in Beijing, China, and then divided into normal cognition (NC) group (n=89), amnestic mild cognitive impairment (aMCI) group (n=79) and AD group (n=84) according to diagnostic criteria. All subjects received neuropsychological assessments, laboratory tests and neuroimaging scans (MRI) at baseline. Plasma REST protein levels and distribution of the single-nucleotide polymorphisms (SNPs) of REST were compared across the three groups. Correlation between cognitive function, neuro-image and REST level was calculated using multi-linear-regression analysis. medial temporal-lobe atrophy (need to add this method). Results: The plasma REST levels in both NC group (430.30±303.43) and aMCI group (414.27±263.39) were significantly higher than AD group ( NC vs AD, p=0.034; aMCI vs AD, p=0.033). There was no significant difference between NC and aMCI group (p=0.948). There was no significant difference among three groups on the distribution of the genotype distribution of Rs2227902 and Rs3976529 of REST gene. The REST level was correlated to left medial temporal-lobe atrophy index (r=0.306, p=0.023). After 6-month follow up, the REST level in NC group was positively related to the change scores of mini-mental state examination scale (MMSE) (r=0.289, p=0.02). Conclusion: Plasma REST protein declines in AD patients, which also associated with memory impairment and left temporal-lobe atrophy, which may have potential value for clinical diagnosis of AD.


Sign in / Sign up

Export Citation Format

Share Document