temporal expression
Recently Published Documents


TOTAL DOCUMENTS

1096
(FIVE YEARS 171)

H-INDEX

72
(FIVE YEARS 5)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 873
Author(s):  
Fengjiao Chen ◽  
Ying Yang ◽  
Jianling Chen ◽  
Zihua Tang ◽  
Qian Peng ◽  
...  

The Notch signaling pathway plays an important role in otic neurogenesis by regulating the differentiation of inner ear hair cells and supporting cells. Notch-regulated differentiation is required for the regeneration of hair cells in the inner ear. The temporal expression pattern of Notch ligands and receptors during in vitro hair cell-like cell differentiation from human embryonic stem cells (hESCs) was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Subsequently, pAJ-U6-shRNA-CMV-Puro/GFP recombinant lentiviral vectors encoding short hairpin RNAs were used to silence JAG-1, JAG-2, and DLL-1, according to the temporal expression pattern of Notch ligands. Then, the effect of each ligand on the in vitro differentiation of hair cells was examined by RT-PCR, immunofluorescence, and scanning electron microscopy (SEM). The results showed that the individual deletion of JAG-2 or DLL-1 had no significant effect on the differentiation of hair cell-like cells. However, the simultaneous inhibition of both DLL-1 and JAG-2 increased the number of hair cell-like cells and decreased the number of supporting cells. JAG-2 and DLL-1 may have a synergistic role in in vitro hair cell differentiation.


2021 ◽  
Author(s):  
Amichay Afriat ◽  
Vanessa Zuzarte-Luís ◽  
Keren Bahar Halpern ◽  
Lisa Buchauer ◽  
Sofia Marques ◽  
...  

AbstractMalaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development have not been molecularly explored. Here, we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host’s and parasite’s temporal expression programs in a zonally-controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, and a sub-population of periportally-biased hepatocytes that harbor abortive infections associated with parasitophorous vacuole breakdown. These ‘abortive hepatocytes’ up-regulate immune recruitment and key signaling programs. They exhibit reduced levels of Plasmodium transcripts, perturbed parasite mRNA localization, and may give rise to progressively lower abundance of periportal infections. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights heterogeneous behavior of both the parasite and the host hepatocyte.


2021 ◽  
Author(s):  
Mei Sun ◽  
Devon Cogswell ◽  
Sheila Adams ◽  
Yasmin Ayoubi ◽  
Ambuj Kumar ◽  
...  

Collagen XI plays a role in nucleating collagen fibrils and in controlling fibril diameter. The aim of this research is to elucidate the role that collagen XI plays in corneal fibrillogenesis during development and following injury. The temporal and spatial expression of collagen XI was evaluated in C57BL/6 wild type (WT) mice. For wound healing studies in adult mice, stromal injuries were created using techniques that avoid caustic chemicals. The temporal expression and spatial localization of collagen XI was studied following injury in a Col11a1 inducible knockout mouse model. We found that collagen XI expression occurs during early maturation and is upregulated after stromal injury in areas of regeneration and remodeling. Abnormal fibrillogenesis with new fibrils of heterogenous size and shape occurs after injury in a decreased collagen XI matrix. In conclusion, we found that collagen XI is expressed in the stroma during development and following injury in adults. Collagen XI is a regulator of collagen fibrillogenesis in regenerating corneal tissue.


Plant Gene ◽  
2021 ◽  
Vol 28 ◽  
pp. 100334
Author(s):  
S. Sivakumar ◽  
G. Prem Kumar ◽  
S. Vinoth ◽  
G. Siva ◽  
M. Vigneswaran ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuwei Cao ◽  
Mengmeng Bi ◽  
Panpan Yang ◽  
Meng Song ◽  
Guoren He ◽  
...  

Abstract Background Anthocyanins, which belong to flavonoids, are widely colored among red-purple pigments in the Asiatic hybrid lilies (Lilium spp.). Transcription factor (TF) LhMYBSPLATTER (formerly known as LhMYB12-Lat), identified as the major kernel protein, regulating the anthocyanin biosynthesis pathway in ‘Tiny Padhye’ of Tango Series cultivars, which the pigmentation density is high in the lower half of tepals and this patterning is of exceptional ornamental value. However, the research on mechanism of regulating the spatial and temporal expression differences of LhMYBSPLATTER, which belongs to the R2R3-MYB subfamily, is still not well established. To explore the molecular mechanism of directly related regulatory proteins of LhMYBSPLATTER in the anthocyanin pigmentation, the yeast one-hybrid (Y1H) cDNA library was constructed and characterized. Results In this study, we describe a yeast one-hybrid library to screen transcription factors that regulate LhMYBSPLATTER gene expression in Lilium, with the library recombinant efficiency of over 98%. The lengths of inserted fragments ranged from 400 to 2000 bp, and the library capacity reached 1.6 × 106 CFU of cDNA insert, which is suitable to fulfill subsequent screening. Finally, seven prey proteins, including BTF3, MYB4, IAA6-like, ERF4, ARR1, ERF WIN1-like, and ERF061 were screened by the recombinant bait plasmid and verified by interaction with the LhMYBSPLATTER promoter. Among them, ERFs, AUX/IAA, and BTF3 may participate in the negative regulation of the anthocyanin biosynthesis pathway in Lilium. Conclusion A yeast one-hybrid library of lily was successfully constructed in the tepals for the first time. Seven candidate TFs of LhMYBSPLATTER were screened, which may provide a theoretical basis for the study of floral pigmentation.


2021 ◽  
Author(s):  
Rachel M Lukowicz-Bedford ◽  
Dylan R Farnsworth ◽  
Adam C Miller

Animal development requires coordinated communication between cells. The Connexin family of proteins is a major contributor to intercellular communication in vertebrates by forming gap junction channels that facilitate the movement of ions, small molecules, and metabolites between cells. Additionally, individual hemichannels can provide a conduit to the extracellular space for paracrine and autocrine signaling. Connexin-mediated communication is well appreciated in epithelial, neural, and vascular development and homeostasis, and most tissues likely use this form of communication. In fact, Connexin disruptions are of major clinical significance contributing to disorders developing from all major germ layers. Despite the fact that Connexins serve as an essential mode of cellular communication, the temporal and cell-type specific expression patterns of connexin genes remain unknown in vertebrates. A major challenge is the large and complex connexin gene family. To overcome this barrier, we probed the expression of all connexins in zebrafish using single-cell RNA-sequencing of entire animals across several stages of organogenesis. Our analysis of expression patterns has revealed that few connexins are broadly expressed, but rather, most are expressed in tissue- or cell-type-specific patterns. Additionally, most tissues possess a unique combinatorial signature of connexin expression with dynamic temporal changes across the organism, tissue, and cell. Our analysis has identified new patterns for well-known connexins and assigned spatial and temporal expression to genes with no-existing information. We provide a field guide relating zebrafish and human connexin genes as a critical step towards understanding how Connexins contribute to cellular communication and development throughout vertebrate organogenesis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xin-Ya Shen ◽  
Zhen-Kun Gao ◽  
Yu Han ◽  
Mei Yuan ◽  
Yi-Sha Guo ◽  
...  

Ischemic stroke refers to the disorder of blood supply of local brain tissue caused by various reasons. It has high morbidity and mortality worldwide. Astrocytes are the most abundant glial cells in the central nervous system (CNS). They are responsible for the homeostasis, nutrition, and protection of the CNS and play an essential role in many nervous system diseases’ physiological and pathological processes. After stroke injury, astrocytes are activated and play a protective role through the heterogeneous and gradual changes of their gene expression, morphology, proliferation, and function, that is, reactive astrocytes. However, the position of reactive astrocytes has always been a controversial topic. Many studies have shown that reactive astrocytes are a double-edged sword with both beneficial and harmful effects. It is worth noting that their different spatial and temporal expression determines astrocytes’ various functions. Here, we comprehensively review the different roles and mechanisms of astrocytes after ischemic stroke. In addition, the intracellular mechanism of astrocyte activation has also been involved. More importantly, due to the complex cascade reaction and action mechanism after ischemic stroke, the role of astrocytes is still difficult to define. Still, there is no doubt that astrocytes are one of the critical factors mediating the deterioration or improvement of ischemic stroke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cecilia Zumajo-Cardona ◽  
Damon P. Little ◽  
Dennis Stevenson ◽  
Barbara A. Ambrose

AbstractAlthough the seed is a key morphological innovation, its origin remains unknown and molecular data outside angiosperms is still limited. Ginkgo biloba, with a unique place in plant evolution, being one of the first extant gymnosperms where seeds evolved, can testify to the evolution and development of the seed. Initially, to better understand the development of the ovules in Ginkgo biloba ovules, we performed spatio-temporal expression analyses in seeds at early developing stages, of six candidate gene homologues known in angiosperms: WUSCHEL, AINTEGUMENTA, BELL1, KANADI, UNICORN, and C3HDZip. Surprisingly, the expression patterns of most these ovule homologues indicate that they are not wholly conserved between angiosperms and Ginkgo biloba. Consistent with previous studies on early diverging seedless plant lineages, ferns, lycophytes, and bryophytes, many of these candidate genes are mainly expressed in mega- and micro-sporangia. Through in-depth comparative transcriptome analyses of Ginkgo biloba developing ovules, pollen cones, and megagametophytes we have been able to identify novel genes, likely involved in ovule development. Finally, our expression analyses support the synangial or neo-synangial hypotheses for the origin of the seed, where the sporangium developmental network was likely co-opted and restricted during integument evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woo-Jin Lee ◽  
Jangsup Moon ◽  
Jung-Ah Lim ◽  
Daejong Jeon ◽  
Jung-Suk Yoo ◽  
...  

AbstractSeizure clustering is a common phenomenon in epilepsy. Protein expression profiles during a seizure cluster might reflect the pathomechanism underlying ictogenesis. We performed proteomic analyses to identify proteins with a specific temporal expression pattern in cluster phases and to demonstrate their potential pathomechanistic role. Pilocarpine epilepsy model mice with confirmed cluster pattern of spontaneous recurrent seizures by long-term video-electroencpehalography were sacrificed at the onset, peak, or end of a seizure cluster or in the seizure-free period. Proteomic analysis was performed in the hippocampus and the cortex. Differentially expressed proteins (DEPs) were identified and classified according to their temporal expression pattern. Among the five hippocampal (HC)-DEP classes, HC-class 1 (66 DEPs) represented disrupted cell homeostasis due to clustered seizures, HC-class 2 (63 DEPs) cluster-onset downregulated processes, HC-class 3 (42 DEPs) cluster-onset upregulated processes, and HC-class 4 (103 DEPs) consequences of clustered seizures. Especially, DEPs in HC-class 3 were hippocampus-specific and involved in axonogenesis, synaptic vesicle assembly, and neuronal projection, indicating their pathomechanistic roles in ictogenesis. Key proteins in HC-class 3 were highly interconnected and abundantly involved in those biological processes. This study described the seizure cluster-associated spatiotemporal regulation of protein expression. HC-class 3 provides insights regarding ictogenesis-related processes.


Sign in / Sign up

Export Citation Format

Share Document