scholarly journals Subunit Composition of Brain Voltage-gated Potassium Channels Determined by Hongotoxin-1, a Novel Peptide Derived fromCentruroides limbatusVenom

1998 ◽  
Vol 273 (5) ◽  
pp. 2639-2644 ◽  
Author(s):  
Alexandra Koschak ◽  
Randal M. Bugianesi ◽  
Jörg Mitterdorfer ◽  
Gregory J. Kaczorowski ◽  
Maria L. Garcia ◽  
...  
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Bernard Attali ◽  
K. George Chandy ◽  
M. Hunter Giese ◽  
Stephan Grissmer ◽  
George A. Gutman ◽  
...  

The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming α subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Bernard Attali ◽  
K. George Chandy ◽  
M. Hunter Giese ◽  
Stephan Grissmer ◽  
George A. Gutman ◽  
...  

The 6TM family of K channels comprises the voltage-gated KV subfamilies, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 7TM, termed BK) and the Ca2+-activated SK subfamily. These channels possess a pore-forming α subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel.


2021 ◽  
Vol 11 (8) ◽  
pp. 1035
Author(s):  
Maria Pia Giannoccaro ◽  
Patrizia Avoni ◽  
Rocco Liguori

The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ.


Biochemistry ◽  
1994 ◽  
Vol 33 (45) ◽  
pp. 13189-13198 ◽  
Author(s):  
Richard E. Middleton ◽  
Deborah J. Pheasant ◽  
Christopher Miller

2007 ◽  
Vol 129 (5) ◽  
pp. 403-418 ◽  
Author(s):  
Gyorgy Panyi ◽  
Carol Deutsch

Slow inactivation involves a local rearrangement of the outer mouth of voltage-gated potassium channels, but nothing is known regarding rearrangements in the cavity between the activation gate and the selectivity filter. We now report that the cavity undergoes a conformational change in the slow-inactivated state. This change is manifest as altered accessibility of residues facing the aqueous cavity and as a marked decrease in the affinity of tetraethylammonium for its internal binding site. These findings have implications for global alterations of the channel during slow inactivation and putative coupling between activation and slow-inactivation gates.


Sign in / Sign up

Export Citation Format

Share Document