selectivity filter
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 107)

H-INDEX

55
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Jamie Vandenberg ◽  
Carus Lau ◽  
Emelie Flood ◽  
Mark Hunter ◽  
Chai-Ann Ng ◽  
...  

Abstract The exquisite fine tuning of biological electrical signalling is mediated by variations in the rates of opening and closing of different ion channels(1). In addition to open and closed conformations, ion channels can exist in an inactivated state, which prevents conduction in the presence of a prolonged activating stimulus(2). Human ether-a-go-go related gene (HERG) K+ channels undergo uniquely rapid and voltage dependent inactivation(3-5), which confers upon them a critical role in protecting against cardiac arrhythmias and sudden death(6). Previous structural studies have captured only the open state of the HERG channel(7,8). Here, we have exploited the K+ sensitivity of HERG inactivation to determine structures of both the conductive state and the elusive inactivated state of HERG. We show that hERG inactivation is facilitated by two competing networks of hydrogen bonds behind the selectivity filter that enable rapid and voltage dependent flipping of the valine carbonyls in the centre of the selectivity filter. Our data also explains how changes in extracellular K+ affects the distribution between conductive and inactivated states(9,10) and thereby explains why hypokalaemia reduces HERG channel activity thereby increasing the risk of cardiac arrhythmias(11).


2021 ◽  
Vol 12 ◽  
Author(s):  
Kitty Hendriks ◽  
Carl Öster ◽  
Adam Lange

Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.


2021 ◽  
Author(s):  
Toby S Turney ◽  
Vivian Li ◽  
Stephen G Brohawn

TWIK1 is a widely expressed pH-gated two-pore domain K+ channel (K2P) that contributes to cardiac rhythm generation and insulin release from pancreatic beta cells. TWIK1 displays unique properties among K2Ps including low basal activity and inhibition by extracellular protons through incompletely understood mechanisms. Here, we present cryo-EM structures of TWIK1 in lipid nanodiscs at high and low pH that reveal a novel gating mechanism at the K+ selectivity filter. At high pH, TWIK1 adopts an open conformation. At low pH, protonation of an extracellular histidine results in a cascade of conformational changes that close the channel by sealing the top of the selectivity filter, displacing the helical cap to block extracellular ion access pathways, and opening gaps for lipid block of the intracellular cavity. These data provide a mechanistic understanding for extracellular pH-gating of TWIK1 and show how diverse mechanisms have evolved to gate the selectivity filter of K+ channels.


2021 ◽  
Author(s):  
SeCheol Oh ◽  
Fabrizio Marinelli ◽  
Wenchang Zhou ◽  
Jooyeon Lee ◽  
Ho Jeong Choi ◽  
...  

Structures of the human lysosomal K+ channel TMEM175 in open and closed states revealed a novel architecture lacking the canonical K+ selectivity filter motif present in previously known K+ channel structures. A hydrophobic constriction composed of four isoleucine residues was resolved in the pore and proposed to serve as the gate in the closed state, and to confer ion selectivity in the open state. Here, we achieve higher-resolution structures of the open and closed states and employ molecular dynamics simulations to analyze the conducting properties of the putative open state, demonstrating that it is capable of permeating K+ ions at the expected rate. Monovalent cations must dehydrate significantly to penetrate the narrow hydrophobic constriction, but ion flow is assisted by a favorable electrostatic field generated by the protein that spans the length of the pore. The balance of these opposing energetic factors explains why permeation is feasible, and why TMEM175 is selective for K+ over Na+, despite the absence of the canonical selectivity filter. Accordingly, mutagenesis experiments reveal an exquisite sensitivity of the channel to perturbations that mitigate the constriction. Together, these data reveal a novel mechanism for selective permeation of ions by TMEM175 that is unlike that of other K+ channels.


2021 ◽  
Author(s):  
Pavel Janoš ◽  
Jana Aupič ◽  
Sharon Ruthstein ◽  
Alessandra Magistrato

Copper is a trace element vital to many cellular functions. Yet its abnormal levels are toxic to cells, provoking a variety of severe diseases. The high affinity Copper Transporter 1 (CTR1), being the main in-cell copper (Cu(I)) entry route, tightly regulates its cellular uptake via a still elusive mechanism. Here, all-atoms simulations unlock the molecular terms of Cu(I) transport in eukaryotes disclosing that the two Methionine triads, forming the selectivity filter, play an unprecedented dual role both enabling selective Cu(I) transport and regulating its uptake-rate thanks to an intimate coupling between the conformational plasticity of their bulky side chains and the number of bound Cu(I) ions. Namely, the Met residues act as a gate reducing the Cu(I) import-rate when two ions simultaneously bind to CTR1. This may represent an elegant autoregulatory mechanism through which CTR1 protects the cells from excessively high, and hence toxic, in-cell Cu(I) levels. Overall, these outcomes resolve fundamental questions in CTR1 biology and open new windows of opportunity to tackle diseases associated with an imbalanced copper uptake.


Cell Reports ◽  
2021 ◽  
Vol 37 (7) ◽  
pp. 110025
Author(s):  
Xiafei Yu ◽  
Yuan Xie ◽  
Xiaokang Zhang ◽  
Cheng Ma ◽  
Likun Liu ◽  
...  

2021 ◽  
Vol 22 (20) ◽  
pp. 10998
Author(s):  
Cédric Vallée ◽  
Brendan Howlin ◽  
Rebecca Lewis

The Epithelial Sodium Channel/Degenerin (ENaC/DEG) family is a superfamily of sodium-selective channels that play diverse and important physiological roles in a wide variety of animal species. Despite their differences, they share a high homology in the pore region in which the ion discrimination takes place. Although ion selectivity has been studied for decades, the mechanisms underlying this selectivity for trimeric channels, and particularly for the ENaC/DEG family, are still poorly understood. This systematic review follows PRISMA guidelines and aims to determine the main components that govern ion selectivity in the ENaC/DEG family. In total, 27 papers from three online databases were included according to specific exclusion and inclusion criteria. It was found that the G/SxS selectivity filter (glycine/serine, non-conserved residue, serine) and other well conserved residues play a crucial role in ion selectivity. Depending on the ion type, residues with different properties are involved in ion permeability. For lithium against sodium, aromatic residues upstream of the selectivity filter seem to be important, whereas for sodium against potassium, negatively charged residues downstream of the selectivity filter seem to be important. This review provides new perspectives for further studies to unravel the mechanisms of ion selectivity.


2021 ◽  
Vol 23 (5) ◽  
pp. 695-705
Author(s):  
Andreea Nissenkorn ◽  
Polina Kornilov ◽  
Asher Peretz ◽  
Lubov Blumkin ◽  
Gali Heimer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document