scholarly journals Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1.

2017 ◽  
Vol 292 (28) ◽  
pp. 12007-12007 ◽  
Author(s):  
Julie D. Atkin ◽  
Manal A. Farg ◽  
Bradley J. Turner ◽  
Doris Tomas ◽  
Judith A. Lysaght ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Xiong ◽  
Yefim Manevich ◽  
Kenneth D. Tew ◽  
Danyelle M. Townsend

S-Glutathionylation of cysteine residues within target proteins is a posttranslational modification that alters structure and function. We have shown that S-glutathionylation of protein disulfide isomerase (PDI) disrupts protein folding and leads to the activation of the unfolded protein response (UPR). PDI is a molecular chaperone for estrogen receptor alpha(ERα). Our present data show in breast cancer cells that S-glutathionylation of PDI interferes with its chaperone activity and abolishes its capacity to form a complex withERα. Such drug treatment also reverses estradiol-induced upregulation of c-Myc, cyclinD1, andP21Cip, gene products involved in cell proliferation. Expression of an S-glutathionylation refractory PDI mutant diminishes the toxic effects of PABA/NO. Thus, redox regulation of PDI causes its S-glutathionylation, thereby mediating cell death through activation of the UPR and abrogation ofERαstability and signaling.


Author(s):  
Yuxiang Zhou ◽  
Xueping Wan ◽  
Kerstin Seidel ◽  
Mo Zhang ◽  
Jena B. Goodman ◽  
...  

Background Persistent activation of endoplasmic reticulum stress and the unfolded protein response (UPR) induces vascular cell apoptosis, contributing to atherogenesis. Aging and hypercholesterolemia are 2 independent proatherogenic factors. How they affect vascular UPR signaling remains unclear. Methods and Results Transcriptome analysis of aortic tissues from high fat diet–fed and aged ApoE −/− mice revealed 50 overlapping genes enriched for endoplasmic reticulum stress‐ and UPR‐related pathways. Aortae from control, Western diet (WD)–fed, and aged ApoE −/− mice were assayed for (1) 3 branches of UPR signaling (pancreatic ER eIF2‐alpha kinase /alpha subunit of the eukaryotic translation initiation factor 1/activating transcription factor 4, inositol‐requiring enzyme 1 alpha/XBP1s, activating transcription factor 6); (2) UPR‐mediated protective adaptation (upregulation of immunoglobulin heavy chain‐binding protein and protein disulfide isomerase); and (3) UPR‐mediated apoptosis (induction of C/EBP homologous transcription factor, p‐JNK, and cleaved caspase‐3). Aortic UPR signaling was differentially regulated in the aged and WD‐fed groups. Consumption of WD activated all 3 UPR branches; in the aged aorta, only the ATF6α arm was activated, but it was 10 times higher than that in the WD group. BiP and protein disulfide isomerase protein levels were significantly decreased only in the aged aorta despite a 5‐fold increase in their mRNA levels. Importantly, the aortae of aged mice exhibited a substantially enhanced proapoptotic UPR compared with that of WD‐fed mice. In lung tissues, UPR activation and the resultant adaptive/apoptotic responses were not significantly different between the 2 groups. Conclusions Using a mouse model of atherosclerosis, this study provides the first in vivo evidence that aging and an atherogenic diet activate differential aortic UPR pathways, leading to distinct vascular responses. Compared with dietary intervention, aging is associated with impaired endoplasmic reticulum protein folding and increased aortic apoptosis.


Blood ◽  
2011 ◽  
Vol 117 (22) ◽  
pp. 5931-5940 ◽  
Author(s):  
Simon Haefliger ◽  
Christiane Klebig ◽  
Kerstin Schaubitzer ◽  
Julian Schardt ◽  
Nikolai Timchenko ◽  
...  

Abstract Deregulation of the myeloid key transcription factor CEBPA is a common event in acute myeloid leukemia (AML). We previously reported that the chaperone calreticulin is activated in subgroups of AML patients and that calreticulin binds to the stem loop region of the CEBPA mRNA, thereby blocking CEBPA translation. In this study, we screened for additional CEBPA mRNA binding proteins and we identified protein disulfide isomerase (PDI), an endoplasmic reticulum (ER) resident protein, to bind to the CEBPA mRNA stem loop region. We found that forced PDI expression in myeloid leukemic cells in fact blocked CEBPA translation, but not transcription, whereas abolishing PDI function restored CEBPA protein. In addition, PDI protein displayed direct physical interaction with calreticulin. Induction of ER stress in leukemic HL60 and U937 cells activated PDI expression, thereby decreasing CEBPA protein levels. Finally, leukemic cells from 25.4% of all AML patients displayed activation of the unfolded protein response as a marker for ER stress, and these patients also expressed significantly higher PDI levels. Our results indicate a novel role of PDI as a member of the ER stress–associated complex mediating blocked CEBPA translation and thereby suppressing myeloid differentiation in AML patients with activated unfolded protein response (UPR).


Sign in / Sign up

Export Citation Format

Share Document