the unfolded protein response
Recently Published Documents


TOTAL DOCUMENTS

2348
(FIVE YEARS 692)

H-INDEX

144
(FIVE YEARS 17)

2022 ◽  
Author(s):  
Kathleen A Trychta ◽  
Brandon K Harvey

Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion which causes ER exodosis, the secretion of ER resident proteins. Club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. Here we examine the secretion of ER resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER resident proteins and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/Grp78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis contributing to cellular toxicity.


2022 ◽  
Vol 23 (2) ◽  
pp. 828
Author(s):  
Hakim Manghwar ◽  
Jianming Li

Plants are sensitive to a variety of stresses that cause various diseases throughout their life cycle. However, they have the ability to cope with these stresses using different defense mechanisms. The endoplasmic reticulum (ER) is an important subcellular organelle, primarily recognized as a checkpoint for protein folding. It plays an essential role in ensuring the proper folding and maturation of newly secreted and transmembrane proteins. Different processes are activated when around one-third of newly synthesized proteins enter the ER in the eukaryote cells, such as glycosylation, folding, and/or the assembling of these proteins into protein complexes. However, protein folding in the ER is an error-prone process whereby various stresses easily interfere, leading to the accumulation of unfolded/misfolded proteins and causing ER stress. The unfolded protein response (UPR) is a process that involves sensing ER stress. Many strategies have been developed to reduce ER stress, such as UPR, ER-associated degradation (ERAD), and autophagy. Here, we discuss the ER, ER stress, UPR signaling and various strategies for reducing ER stress in plants. In addition, the UPR signaling in plant development and different stresses have been discussed.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Dae Kwan Ko ◽  
Federica Brandizzi

AbstractAdverse environmental and pathophysiological situations can overwhelm the biosynthetic capacity of the endoplasmic reticulum (ER), igniting a potentially lethal condition known as ER stress. ER stress hampers growth and triggers a conserved cytoprotective signaling cascade, the unfolded protein response (UPR) for ER homeostasis. As ER stress subsides, growth is resumed. Despite the pivotal role of the UPR in growth restoration, the underlying mechanisms for growth resumption are yet unknown. To discover these, we undertook a genomics approach in the model plant species Arabidopsis thaliana and mined the gene reprogramming roles of the UPR modulators, basic leucine zipper28 (bZIP28) and bZIP60, in ER stress resolution. Through a network modeling and experimental validation, we identified key genes downstream of the UPR bZIP-transcription factors (bZIP-TFs), and demonstrated their functional roles. Our analyses have set up a critical pipeline for functional gene discovery in ER stress resolution with broad applicability across multicellular eukaryotes.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Uta Barbara Metzing ◽  
Christian von Loeffelholz ◽  
Ricardo Steidl ◽  
Bernd Romeike ◽  
René Winkler ◽  
...  

AbstractWe provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mingming Shi ◽  
Yan Chai ◽  
Jianning Zhang ◽  
Xin Chen

Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.


2022 ◽  
Vol 23 (2) ◽  
pp. 584
Author(s):  
Eva Pauwels ◽  
Becky Provinciael ◽  
Anita Camps ◽  
Enno Hartmann ◽  
Kurt Vermeire

One of the reported substrates for the endoplasmic reticulum (ER) translocation inhibitor cyclotriazadisulfonamide (CADA) is DNAJC3, a chaperone of the unfolded protein response during ER stress. In this study, we investigated the impact of altered DNAJC3 protein levels on the inhibitory activity of CADA. By comparing WT DNAJC3 with a CADA-resistant DNAJC3 mutant, we observed the enhanced sensitivity of human CD4, PTK7 and ERLEC1 for CADA when DNAJC3 was expressed at high levels. Combined treatment of CADA with a proteasome inhibitor resulted in synergistic inhibition of protein translocation and in the rescue of a small preprotein fraction, which presumably corresponds to the CADA affected protein fraction that is stalled at the Sec61 translocon. We demonstrate that DNAJC3 enhances the protein translation of a reporter protein that is expressed downstream of the CADA-stalled substrate, suggesting that DNAJC3 promotes the clearance of the clogged translocon. We propose a model in which a reduced DNAJC3 level by CADA slows down the clearance of CADA-stalled substrates. This results in higher residual translocation into the ER lumen due to the longer dwelling time of the temporarily stalled substrates in the translocon. Thus, by directly reducing DNAJC3 protein levels, CADA attenuates its net down-modulating effect on its substrates.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12759
Author(s):  
Linluo Zhang ◽  
Changqing Li ◽  
Ling Fu ◽  
Zhichao Yu ◽  
Gengrui Xu ◽  
...  

Catalpol significantly reduces triptolide-induced hepatotoxicity, which is closely related to autophagy. The aim of this study was to explore the unclear protective mechanism of catalpol against triptolide. The detoxification effect of catalpol on triptolide was investigated in HepaRG cell line. The detoxification effects were assessed by measuring cell viability, autophagy, and apoptosis, as well as the endoplasmic reticulum stress protein and mRNA expression levels. We found that 5–20 µg/L triptolide treatments increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as the expression of autophagy proteins including LC3 and Beclin1. The expression of P62 was downregulated and the production of autophagosomes was increased, as determined by transmission electron microscope and monodansylcadaverine staining. In contrast, 40 µg/L catalpol reversed these triptolide-induced changes in the liver function index, autophagy level, and apoptotic protein expression, including Cleaved-caspase3 and Cleaved-caspase9 by inhibiting excessive autophagy. Simultaneously, catalpol reversed endoplasmic reticulum stress, including the expression of PERK, which regulates autophagy. Moreover, we used the PERK inhibitor GSK2656157 to prove that the PERK-ATF4-CHOP pathway of the unfolded protein response is an important pathway that could induce autophagy. Catalpol inhibited excessive autophagy by suppressing the PERK pathway. Altogether, catalpol protects against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. The results of this study are beneficial to clarify the detoxification mechanism of catalpol against triptolide-induced hepatotoxicity and to promote the application of triptolide.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Aundrea K. Westfall ◽  
Blair W. Perry ◽  
Abu H. M. Kamal ◽  
Nicole R. Hales ◽  
Jarren C. Kay ◽  
...  

Abstract Background Snakes exhibit extreme intestinal regeneration following months-long fasts that involves unparalleled increases in metabolism, function, and tissue growth, but the specific molecular control of this process is unknown. Understanding the mechanisms that coordinate these regenerative phenotypes provides valuable opportunities to understand critical pathways that may control vertebrate regeneration and novel perspectives on vertebrate regenerative capacities. Results Here, we integrate a comprehensive set of phenotypic, transcriptomic, proteomic, and phosphoproteomic data from boa constrictors to identify the mechanisms that orchestrate shifts in metabolism, nutrient uptake, and cellular stress to direct phases of the regenerative response. We identify specific temporal patterns of metabolic, stress response, and growth pathway activation that direct regeneration and provide evidence for multiple key central regulatory molecules kinases that integrate these signals, including major conserved pathways like mTOR signaling and the unfolded protein response. Conclusion Collectively, our results identify a novel switch-like role of stress responses in intestinal regeneration that forms a primary regulatory hub facilitating organ regeneration and could point to potential pathways to understand regenerative capacity in vertebrates.


Sign in / Sign up

Export Citation Format

Share Document