scholarly journals Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis

2017 ◽  
Vol 292 (23) ◽  
pp. 9652-9665 ◽  
Author(s):  
David A. Korasick ◽  
Thameesha T. Gamage ◽  
Shelbi Christgen ◽  
Kyle M. Stiers ◽  
Lesa J. Beamer ◽  
...  
Biochemistry ◽  
2014 ◽  
Vol 53 (31) ◽  
pp. 5150-5161 ◽  
Author(s):  
Benjamin W. Arentson ◽  
Min Luo ◽  
Travis A. Pemberton ◽  
John J. Tanner ◽  
Donald F. Becker

2021 ◽  
pp. 49-52
Author(s):  
Anand Shanker Singh ◽  
G. Radhika ◽  
R. Praveen Kumar ◽  
Debarshi Jana

Proline utilization A (PutA) from Bradyrhizobium japonicum (BjPutA) is a bifunctional avoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and ∆1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the intermediate P5C from the PRODH domain to the P5CDH domain. In this work several mutations were made along the channel in an effort to block passage of P5C to the second active site. Analysis of several site-specic mutants in the substrate channel of BjPutA revealed an important role for D779 in the channeling path. BjPutA mutants D779Y and D779W signicantly decreased the overall PRODH-P5CDH channeling reaction indicating that bulky mutations at residue D779 impede travel of P5C through the channel. Interestingly, D779Y and D779W also exhibited lower P5CDH activity, suggesting that exogenous P5C must enter the channel upstream of D779. Replacing D779 with a smaller residue (D779A) had no effect on the catalytic and channeling properties of BjPutA showing that the carboxylate group of D779 is not essential for channeling. An identical mutation at D778 (D778Y) did not impact BjPutA channeling activity. Thus, D779 is optimally orientated so that replacement with the larger side chains of Tyr/Trp blocks P5C movment through the channel. The kinetic data reveal not only that bulky mutations at residue D779 hinder passage of P5C to the second active site, but also P5C must use the channel to efciently access the P5CDH domain. Moreover, these mutants may be used to learn more about the hydrolysis event that is thought to take place within the channel


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
YiZi Mao ◽  
Javier Seravalli ◽  
John Tanner ◽  
Donald Becker

1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


2005 ◽  
Vol 280 (44) ◽  
pp. 36747-36753 ◽  
Author(s):  
Edgar M. Harvat ◽  
Julie M. Stevens ◽  
Christina Redfield ◽  
Stuart J. Ferguson

iScience ◽  
2021 ◽  
pp. 102681
Author(s):  
Chao Wu ◽  
Abraham J. Qavi ◽  
Asmaa Hachim ◽  
Niloufar Kavian ◽  
Aidan R. Cole ◽  
...  

2007 ◽  
Vol 282 (40) ◽  
pp. 29163-29169 ◽  
Author(s):  
Victor P. T. Pau ◽  
Yongfang Zhu ◽  
Zhiguang Yuchi ◽  
Quyen Q. Hoang ◽  
Daniel S. C. Yang

Sign in / Sign up

Export Citation Format

Share Document