channel blocking
Recently Published Documents


TOTAL DOCUMENTS

715
(FIVE YEARS 46)

H-INDEX

52
(FIVE YEARS 2)

Author(s):  
Stacey Peters ◽  
Bryony A. Thompson ◽  
Mark Perrin ◽  
Paul James ◽  
Dominica Zentner ◽  
...  

Background: Variants in the SCN5A gene, that encodes the cardiac sodium channel, Nav1.5, are associated with a highly arrhythmogenic form of dilated cardiomyopathy (DCM). Our aim was to review the phenotypes, natural history, functional effects, and treatment outcomes of DCM-associated rare SCN5A variants. Methods: A systematic review of reported DCM-associated rare SCN5A variants was undertaken using PubMed and Embase. Results: Eighteen SCN5A rare variants in 29 families with DCM (173 affected individuals) were identified. Eleven variants had undergone experimental evaluation, with 7 of these resulting in increased sustained current flow during the action potential (eg, increased window current) and at resting membrane potentials (eg, creation of a new gating pore current). These variants were located in transmembrane voltage-sensing domains and had a consistent phenotype characterized by frequent multifocal narrow and broad complex ventricular premature beats (VPB; 72% of affected relatives), ventricular arrhythmias (33%), atrial arrhythmias (32%), sudden cardiac death (13%), and DCM (56%). This VPB-predominant phenotype was not seen with 1 variant that increased late sodium current, or with variants that reduced peak current density or had mixed effects. In the latter groups, affected individuals mainly showed sinus node dysfunction, conduction defects, and atrial arrhythmias, with infrequent VPB and VA. DCM did not occur in the absence of arrhythmias for any variant. Twelve studies (23 total patients) reported treatment success in the VPB-predominant cardiomyopathy using sodium channel-blocking drug therapy. Conclusions: SCN5A variants can present with a diverse spectrum of primary arrhythmic features. A majority of DCM-associated variants cause a multifocal VPB-predominant cardiomyopathy that is reversible with sodium channel blocking drug therapy. Early recognition of the distinctive phenotype and prompt genetic testing to identify variant carriers are needed. Our findings have implications for interpretation and management of SCN5A variants found in DCM patients with and without arrhythmias.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Tamás Árpádffy-Lovas ◽  
Muhammad Naveed ◽  
Aiman Saleh A. Mohammed ◽  
László Virág ◽  
István Baczkó ◽  
...  

Rodents are commonly used as models in electrophysiology. However, distinct differences exist between large animals and rodents in terms of their ion channel expression and action potential shapes, possibly limiting the translational value of findings obtained in rodents. We aimed for a direct comparison of the possible impact of selective inhibition of ion channels on the cardiac repolarization in preparations from human hearts and from model species. We applied the standard microelectrode technique at 37°C on cardiac ventricular preparations (papillary muscles and trabecules) from human (n = 63), dog (n = 47), guinea pig (n = 53), rat (n = 43), and rabbit (n = 16) hearts, paced at 1 Hz. To selectively block the IKur current, 1 µM XEN-D101; IK1 current, 10 µM barium chloride; IKr current, 50 nM dofetilide; IKs current, 500 nM HMR-1556; and Ito current, 100 µM chromanol-293B were applied directly to the tissue bath. The block of IKur and IK1 elicited significantly more prominent prolongation of APD in rats (35.6% and 67.9%, respectively) when compared with the other species, including that of human (1.0% and 2.6%, respectively). On the other hand, IKr block did not affect APD in rat preparations (1.6%), whereas it elicited marked prolongation in other species (9.0–47.7%), especially being pronounced in human preparations (60.3%). IKs inhibition elicited similar but minor APD prolongation (0.3–11.4%) in all species. Inhibition of Ito moderately lengthened APD in dog (22.3%) and rabbit (17.5%) preparations but elicited no change of APD in human preparations. In contrast, block of Ito caused marked APD prolongation in rat preparations (33.2%). Our findings suggest that the specific inhibition of various ion channels elicits fundamentally different effects in rodent ventricular action potential when compared with those of other species, including human. Therefore, from a translational standpoint, rodent models in cardiac electrophysiological and arrhythmia research should be used with great caution.


2021 ◽  
Vol 67 (5) ◽  
pp. 30-38
Author(s):  
S.P. Beschasnyi ◽  
◽  
O.M. Hasiuk ◽  

We investigated the metabolism of mouse isolated heart under the influence of tricarbonyldichlorothenium (II)- dimer (CORM-2 and 2,3-4,5-bis-O-isopropylidene-βD-fructopyranose sulfamate (topiramate) as potential blockers of aquaporine channel (AQP3) of cardiac myocytes. The results were compared with those obtained from the group receiving anti-AQP3 monoclonal antibodies. A decrease in coronary flow was found during the period preceding ischemia (topiramate did not cause this effect). However, at the end of reperfusion, CORM-2 was responsible for its stabilization. This compound did not affect glucose intake (topiramate increased it only at the end of reperfusion), decreased Ca2+ deposition in cardiac muscle (AQP3-IgG antibodies and topiramate had similar effect), decreased creatinine release, AST (especially at the end of reperfusion). The action of CORM-2 increased the amplitude of the R waveform before ischemia and during reperfusion. At the end of reperfusion the R-wave amplitude decreased. The effect of topiramate caused an increase in amplitude only at the beginning of reperfusion. Administration of CORM-2, topiramate and antibodies resulted in prolongation of the interval before and during ischemia. At the same time, the effect of these drugs and antibodies reduced the development of ischemic damage. The results indicate that the released CO from CORM-2 has effects similar to those of anti-AQP3 antibodies. The action of topiramate had signs of calcium channel blocking.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chih-Hsiang Lin ◽  
Chen-Jui Ho ◽  
Yan-Ting Lu ◽  
Meng-Han Tsai

Abstract Background Many antiseizure medications (ASMs) control seizures by blocking voltage-dependent sodium channels. Polymorphisms of sodium channel genes may affect the response to ASMs due to altering the effect of ASMs on blocking sodium channels. Methods We conducted a retrospective study of epilepsy patients followed up at the Neurological Department of Kaohsiung Chang Gung Memorial Hospital, Taiwan between January 2010 and December 2018. We categorized the patients into response, partial response, and failure to sodium channel blocking ASM groups. Sodium channel blocking ASMs included phenytoin, carbamazepine, lamotrigine, oxcarbazepine, lacosamide, zonisamide, topiramate, and valproic acid. A subgroup of predominant sodium channel blocking ASMs included phenytoin, carbamazepine, lamotrigine, oxcarbazepine, and lacosamide. Associations between the response of ASMs and single-nucleotide polymorphisms of SCN1A, SCN1B, SCN2A, and SCN9A were analyzed. Results Two hundred Taiwanese patients and 21 single-nucleotide polymorphisms among SCN1A, SCN1B, SCN2A, and SCN9A were evaluated. We found allele C of rs55742440 in SCN1B was statistically significantly associated with not achieving seizure-free with sodium channel blocking ASMs. For the predominant sodium channel blocking ASMs group, no SNPs were associated with the response of ASMs. Conclusion Single-nucleotide polymorphism in SCN1B was associated with the response to sodium channel blocking ASMs. This highlights the possibility that beta subunits may affect the function of sodium channels and resulted in different responsiveness to ASMs.


2021 ◽  
Vol 22 (19) ◽  
pp. 10186
Author(s):  
D. Ryan King ◽  
Meghan W. Sedovy ◽  
Xinyan Leng ◽  
Jianxiang Xue ◽  
Samy Lamouille ◽  
...  

Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.


Author(s):  
D. Ryan King ◽  
Meghan W. Sedovy ◽  
Xinyan Leng ◽  
Jianxiang Xue ◽  
Samy Lamouille ◽  
...  

Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action and the potential for these molecules in the treatment of disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Madoka Iizumi ◽  
Akiko Oota-Ishigaki ◽  
Mariko Yamashita ◽  
Takashi Hayashi

AMPA receptors are responsible for fast excitatory synaptic transmission in the mammalian brain. Post-translational protein S-palmitoylation of AMPA receptor subunits GluA1-4 reversibly regulates synaptic AMPA receptor expression, resulting in long-lasting changes in excitatory synaptic strengths. Our previous studies have shown that GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice exhibited hyperexcitability in the cerebrum and elevated seizure susceptibility without affecting brain structure or basal synaptic transmission. Moreover, some inhibitory GABAergic synapses-targeting anticonvulsants, such as valproic acid, phenobarbital, and diazepam, had less effect on these AMPA receptor palmitoylation-deficient mutant mice. This work explores pharmacological effect of voltage-gated ion channel-targeted anticonvulsants, phenytoin and trimethadione, on GluA1C811S mice. Similar to GABAergic synapses-targeting anticonvulsants, anticonvulsive effects were also reduced for both sodium channel- and calcium channel-blocking anticonvulsants, which suppress excess excitation. These data strongly suggest that the GluA1C811S mice generally underlie the excessive excitability in response to seizure-inducing stimulation. AMPA receptor palmitoylation site could be a novel target to develop unprecedented type of anticonvulsants and GluA1C811S mice are suitable as a model animal for broadly evaluating pharmacological effectiveness of antiepileptic drugs.


2021 ◽  
pp. 49-52
Author(s):  
Anand Shanker Singh ◽  
G. Radhika ◽  
R. Praveen Kumar ◽  
Debarshi Jana

Proline utilization A (PutA) from Bradyrhizobium japonicum (BjPutA) is a bifunctional avoenzyme that catalyzes the oxidation of proline to glutamate using fused proline dehydrogenase (PRODH) and ∆1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Recent crystal structures and kinetic data suggest an intramolecular channel connects the two active sites, promoting substrate channeling of the intermediate P5C from the PRODH domain to the P5CDH domain. In this work several mutations were made along the channel in an effort to block passage of P5C to the second active site. Analysis of several site-specic mutants in the substrate channel of BjPutA revealed an important role for D779 in the channeling path. BjPutA mutants D779Y and D779W signicantly decreased the overall PRODH-P5CDH channeling reaction indicating that bulky mutations at residue D779 impede travel of P5C through the channel. Interestingly, D779Y and D779W also exhibited lower P5CDH activity, suggesting that exogenous P5C must enter the channel upstream of D779. Replacing D779 with a smaller residue (D779A) had no effect on the catalytic and channeling properties of BjPutA showing that the carboxylate group of D779 is not essential for channeling. An identical mutation at D778 (D778Y) did not impact BjPutA channeling activity. Thus, D779 is optimally orientated so that replacement with the larger side chains of Tyr/Trp blocks P5C movment through the channel. The kinetic data reveal not only that bulky mutations at residue D779 hinder passage of P5C to the second active site, but also P5C must use the channel to efciently access the P5CDH domain. Moreover, these mutants may be used to learn more about the hydrolysis event that is thought to take place within the channel


Author(s):  
Vykuntaraju K. Gowda ◽  
Manojna Battina ◽  
Hemadri Vegda ◽  
Varunvenkat M. Srinivasan ◽  
Surendra K. Chikara ◽  
...  

AbstractThe SCN encephalopathies are one of the rare early childhood intractable epileptic encephalopathies associated with pleomorphic seizures, cognitive decline, motor, and behavioral abnormalities that begin in early infancy. There is a dearth of data on phenotype and genotype of SCN encephalopathies from the Indian subcontinent, hence we are reporting clinical and molecular profile and outcome of SCN developmental and epileptic encephalopathies. This is a retrospective chart review of SCN developmental and epileptic encephalopathies in a tertiary care center, Bangalore, India between January 2015 and March 2020. All children with clinical features of SCN developmental and epileptic encephalopathies and confirmed with pathogenic variants were included. A total of 50 cases of SCN developmental and epileptic encephalopathies were analyzed, 31 of them were male and the mean age of presentation was 7.8 months. Precipitating factors for the first episode of seizure were fever and vaccination accounting for 33 and 8 children, respectively. Forty (80%) children had prolonged seizures and 15 (30%) had epileptic spasms. All children had a normal birth history and normal development before the onset of seizures, which was followed by developmental delay and regression. Thirty (60%) children had behavioral difficulties, notable hyperactivity, and autistic features. Neuroimaging and the initial electroencephalogram (EEG) were normal in all patients. The mean age of abnormal EEG was 14 months. The various subtypes of SCN variants were SCN1A in 31 children followed by SCN2A and SCN9A in eight children each and SCN1B in three children. Frameshift and nonsense mutations were associated with more severe phenotype and poor outcome compared with missense mutations. Thirty-four patients partially responded to treatment and the rest were refractory. The results of genetic testing were used to guide treatment; sodium channel blocking antiepileptic drugs were discontinued in 15 patients and sodium channel blocking agents were started in 3 patients with partial response. Three out of four children on stiripentol had a partial response. The SCN developmental and epileptic encephalopathies can present with epileptic spasms in addition to other types of seizures. Epileptic spasms are more common in nonsense and frameshift mutations. The outcome is poor in children with epileptic spasms compared with those without epileptic spasms. Genetic testing helps to select antiepileptic drugs that lead to seizure reduction.


Sign in / Sign up

Export Citation Format

Share Document