african swine fever
Recently Published Documents


TOTAL DOCUMENTS

2277
(FIVE YEARS 1088)

H-INDEX

68
(FIVE YEARS 21)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Xun Wang ◽  
Xiaoying Wang ◽  
Xiaoxiao Zhang ◽  
Sheng He ◽  
Yaosheng Chen ◽  
...  

African swine fever (ASF) was first introduced into Northern China in 2018 and has spread through China since then. Here, we extracted the viral DNA from the blood samples from an ASF outbreak farm in Guangdong province, China and sequenced the whole genome. We assembled the full length genomic sequence of this strain, named China/GD/2019. The whole genome was 188,642 bp long (terminal inverted repeats and loops were not sequenced), encoding 175 open reading frames (ORF). The China/GD/2019 strain belonged to p72 genotype II and p54 genotype IIa. Phylogenetic analysis relationships based on single nucleotide polymorphisms (SNPs) also demonstrated that it grouped into genotype II. A certain number of ORFs mainly belonging to multigene families (MGFs) were absent in the China/GD/2019 strain in comparison to the China/ASFV/SY-18 strain. A deletion of approximately 1 kb was found in the China/GD/2019 genome which was located at the EP153R and EP402R genes in comparison to the China/2018/AnhuiXCGQ strain. We revealed a synonymous mutation site at gene F317L and a non-synonymous mutation site at gene MGF_360-6L in China/GD/2019 comparing to three known Chinese strains. Pair-wise comparison revealed 165 SNP sites in MGF_360-1L between Estonia 2014 and the China/GD/2019 strain. Comparing to China/GD/2019, we revealed a base deletion located at gene D1133L in China/Pig/HLJ/2018 and China/DB/LN/2018, which results in a frameshift mutation to alter the encoding protein. Our findings indicate that China/GD/2019 is a new variant with certain deletions and mutations. This study deepens our understanding of the genomic diversity and genetic variation of ASFV.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kexin Zhong ◽  
Mengmeng Zhu ◽  
Qichao Yuan ◽  
Zhibang Deng ◽  
Simeng Feng ◽  
...  

African swine fever (ASF) is a highly detrimental viral disease caused by African swine fever virus (ASFV). The occurrence and prevalence of this disease have become a serious threat to the global swine industry and national economies. At present, the detection volume of African swine fever is huge, more sensitive and accurate detection techniques are needed for the market. pp62 protein, as a protein in the late stage of infection, has strong antigenicity and a high corresponding antibody titer in infected pigs. In this study, the CP530R gene was cloned into expression vector pET-28a to construct a prokaryotic expression plasmid, which was induced by IPTG to express soluble pp62 protein. Western blot analysis showed that it had great reactivity. Using the purified recombinant protein as an antigen, an indirect ELISA method for detecting ASFV antibody was established. The method was specific only to ASFV-positive serum, 1:1600 diluted positive serum could still be detected, and the coefficients of variation (CV) of the intra assay and inter assay were both <10%. It turns out that the assays had excellent specificity, sensitivity, and repeatability. This provides an accurate, rapid, and economical method for the detection of ASFV antibody in clinical pig serum samples.


Author(s):  
Novera Nirmalasanti ◽  
Hefni Effendi ◽  
Ririn Setyowati

African Swine Fever (ASF) is one of the  infectious diseases affecting swine with high mortality rate. Disease transmission occurs direct and indirect. Indirect transmission through feed, virus contaminated object and swill feeding produced by ships. Ships berthing in the port of Tanjung Priok mostly comes or transits from a country which ASF exist. Among those ships, some discharge their garbage and take over into the final dumping site without any further treatment. There are many institution and a third parties involved in garbage management in the port of Tanjung Priok. This research aims is to identify an obstacle, actors and strategies in managing garbage from the ships to prevent ASF spread in the port of Tanjung Priok using Interpretative Structural Modelling (ISM). The results of this research shows the biggest obstacle in managing garbage from the ships, in order to prevent ASF spread in the port of Tanjung Priok is the absence of standard operating procedures (SOP), The most important actor is Indonesia Port Corporation II and the most important strategy is develop an integrated SOP for ship waste management. is to develop an integrated SOP for ship waste management.  


2022 ◽  
Vol 8 ◽  
Author(s):  
T. Aliro ◽  
E. Chenais ◽  
W. Odongo ◽  
D. M. Okello ◽  
C. Masembe ◽  
...  

African swine fever (ASF) is endemic in Uganda and considered a major constraint to pig production. In the absence of a vaccine, biosecurity is key for ASF prevention and control. To improve prevention and control on farm and community level there is need for more knowledge on current application of biosecurity practises, and better understanding of how pig value chain actors perceive prevention and control. To achieve this, a qualitative interview study involving focus group discussions (FGD) was conducted with actors from the smallholder pig value chain in northern Uganda. Six villages were purposively selected based on previous outbreaks of ASF, preliminary perceived willingness to control ASF, and the representation of several different value chain actors in the village. Results indicated that biosecurity practises such as basic hygiene routines including safe carcass handling, minimising direct and indirect contacts between pigs or between pigs and people, trade restrictions and sharing of disease information were implemented in some of the villages. Thematic analysis based on grounded theory revealed six categories of data relating to ASF prevention and control. Together these categories form a logical framework including both enablers and hindrances for ASF prevention and control. In summary participants mostly had positive perceptions of ASF biosecurity, describing measures as effective. Participants further possessed knowledge of ASF and its transmission, some of which was in line with known scientific knowledge and some not. Nevertheless, participants were hindered from preventing and controlling ASF due to biosecurity costs and a need to prioritise family livelihood over disease transmission risks, incompatibility of current biosecurity practises with local culture, traditions and social contexts and finally lack of access to veterinarians or, occasionally, low-quality veterinary services. The constraints could be addressed by applying participatory processes in designing biosecurity measures to ensure better adaptation to local cultural and social contexts.


Author(s):  
Yang Wang ◽  
Shuai Cui ◽  
Ting Xin ◽  
Xixi Wang ◽  
Hainan Yu ◽  
...  

African swine fever (ASF) is a devastating infectious disease caused by African swine fever virus (ASFV). The ASFV genome encodes multiple structural and non-structural proteins that contribute to evasion of host immunity. In this study, we determined that the viral non-structural protein MGF360-14L inhibits interferon-β (IFN-β) promoter activity induced by cGAS-STING signaling. MGF360-14L was also found to downregulate expression of the IRF3 protein and promote its degradation through ubiquitin-meditated proteolysis. Moreover, MGF360-14L was shown to interact with and destabilize IRF3 by facilitating E3 ligase TRIM21-mediated K63-linked ubiquitination of IRF3. Overall, our study revealed that MGF360-14L promotes degradation of IRF3 through TRIM21, thereby inhibiting type I interferon production. These findings provide new insights into the mechanisms underlying ASFV immune evasion.


2022 ◽  
Author(s):  
Mengnan Qi ◽  
Li Pan ◽  
Ying Gao ◽  
Miao Li ◽  
Yanjin Wang ◽  
...  

African swine fever (ASF) is a highly contagious disease with high morbidity and mortality caused by African swine fever virus (ASFV). Cleaning and disinfection remain one of the most effective biosecurity measures to prevent and control the spread of ASFV. In this study, we evaluated the inactivation effects of highly complexed iodine (HPCI) combined with compound organic acids (COAs) against ASFV under different conditions. The results showed that the inactivation rates of the disinfectants on the reporter ASFV increased in dose- and time-dependent manners, the best inactivation effects were obtained when the compatibility ratio of HPCI and COAs was 5:1 at 25°C. Furthermore, there were no significant differences by comparing the efficacy of HPCI combined with COAs (HPCI+COAs) in inactivating wild-type ASFV and the reporter ASFV (P > 0.05). ASFV of 104.0 TCID50/mL was completely inactivated by 0.13% HPCI (0.0065% effective iodine), 0.06% COAs or 0.13% HPCI+COAs (approximately 0.0054% effective iodine), respectively, while 106.0 TCID50/mL ASFV was completely inactivated by 1.00% HPCI (0.05% effective iodine), 0.50% COAs or 1.00% HPCI+COAs (0.042% effective iodine), respectively. Therefore, HPCI+COAs had synergistic effects to inactivate ASFV. This study demonstrated that HPCI+COAs could rapidly and efficiently inactivate ASFV and represent an effective compound disinfectant for the control of ASF.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Carolina Muñoz-Pérez ◽  
Jaime Bosch ◽  
Satoshi Ito ◽  
Marta Martínez-Avilés ◽  
José Manuel Sánchez-Vizcaíno

African swine fever (ASF) is a devastating infectious disease of pigs that is threatening the global swine industry at present. The current spread of ASF in Europe and its recent incursion into Germany pose a serious risk to Spain, one of the world’s leading pig producers. A quantitative stochastic risk assessment model was developed to estimate the probability of ASF introduction into Spain via the legal import of live pigs. The results suggest a low annual probability of ASF introduction into Spain (1.07 × 10−4), the highest risk being concentrated in Central European countries (Germany, the Netherlands, Belgium, and Luxembourg) during the months of April and February. The methods and results presented herein could contribute to improving prevention and control strategies and, ultimately, would help reduce the risk of ASF introduction into Spain.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Saúl Jiménez-Ruiz ◽  
Eduardo Laguna ◽  
Joaquín Vicente ◽  
Ignacio García-Bocanegra ◽  
Jordi Martínez-Guijosa ◽  
...  

Abstract Background To control the transmission of relevant shared diseases, such as animal tuberculosis (TB) and African swine fever (ASF), it is essential to reduce the risk of interaction between livestock and wild ungulates. In Eastern and Central Europe, the current spread of ASF virus affecting wild boar and domestic pigs (especially those raised outdoors and/or in backyards) has devastated the pig sector in affected regions and is seriously threatening other exporting countries. Here, we evaluated the risk of wildlife-livestock interactions on 45 outdoor pig farms in Spain, the second largest pork producer in the EU and then proposed biosecurity-related actions. An integrated, systematic wildlife risk mitigation protocol based on interviews, questionnaires and field audits was developed and applied on each farm. Results Most of the interaction risk points were associated with water sources (84.2%; 701/832), mainly springs and ponds, which accounted for almost all the specific points with high or very high risk scores. The risk of interaction at feeding points (6.9%; 57/832) and those associated with facilities for livestock and/or game management (8.9%; 74/832) were rated as low and very low risk, respectively. Wild boar were present and hunted on 69% of the farms. Supplementary feeding for wild ungulate species (mainly wild boar) was provided on almost half (48.9%; 22/45) the surveyed farms. Risk mitigation actions were categorised to target water access, waterers, food, other livestock species, grazing, wildlife, and offal disposal. Of the total number of actions (n = 2016), 82.7% were identified as priority actions while 17.3% represented alternative options which were identified less cost-effective. On average, 37.1 (median: 32; range 14–113) action proposals per study farm were made and 2.0 (median: 1; range 0–4) per risk point. The mean estimated cost of implementing the proposed priority actions was 14,780 €/farm (25.7 €/hectare and 799.4 €/risk point). Conclusions This study expands the knowledge of interaction risks between domestic pigs and wild ungulates in outdoor pig farming systems and highlights the importance of considering local risks and management practices when designing and prioritising adapted wildlife risk mitigation and biosecurity actions. This practical and feasible protocol developed for Mediterranean ecosystems is easily transferable to professionals and can be adapted to extensive (outdoor) production or epidemiological systems in other European regions.


Author(s):  
Pengfei Wang ◽  
Chunguo Liu ◽  
Shida Wang ◽  
Lili Wen ◽  
Zhibin Shi ◽  
...  

AbstractAfrican swine fever (ASF) is an acute hemorrhagic disease of domestic pigs. The causative agent of ASF, ASF virus (ASFV), is a double-stranded DNA virus, the sole member in the family Asfarviridae. The non-structural protein pB602L of ASFV is a molecular chaperone of the major capsid protein p72 and plays a key role in icosahedral capsid assembly. This protein is antigenic and is a target for developing diagnostic tools for ASF. To generate monoclonal antibodies (mAbs) against pB602L, a prokaryotically expressed recombinant pB602L protein was produced, purified, and used as an antigen to immunize mice. A total of eight mouse mAbs were obtained, and their binding epitopes were screened by Western blot using an overlapping set of polypeptides from pB602L. Three linear epitopes were identified and designated epitope 1 (366ANRERYNY373), epitope 2 (415GPDAPGLSI423), and epitope 3 (498EMLNVPDD505). Based on the epitope recognized, the eight mAbs were placed into three groups: group 1 (B2A1, B2F1, and B2D10), group 2 (B2H10, B2B2, B2D8, and B2A3), and group 3 (B2E12). The mAbs B2A1, B2H10, and B2E12, each representing one of the groups, were used to detect pB602L in ASFV-infected porcine alveolar macrophages (PAMs) and pig tissues, using an indirect fluorescence assay (IFA) and immunohistochemical staining, respectively. The results showed that pB602L was detectable with all three mAbs in immunohistochemical staining, but only B2H10 was suitable for detecting the proteins in ASFV-infected PAMs by IFA. In summary, we developed eight anti-pB602L mouse mAbs recognizing three linear epitopes in the protein, which can be used as reagents for basic and applied research on ASFV.


Sign in / Sign up

Export Citation Format

Share Document