scholarly journals Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7

2020 ◽  
Vol 295 (15) ◽  
pp. 5067-5080 ◽  
Author(s):  
Akello J. Agwa ◽  
Poanna Tran ◽  
Alexander Mueller ◽  
Hue N. T. Tran ◽  
Jennifer R. Deuis ◽  
...  

Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.

2016 ◽  
Vol 291 (33) ◽  
pp. 17049-17065 ◽  
Author(s):  
Sónia Troeira Henriques ◽  
Evelyne Deplazes ◽  
Nicole Lawrence ◽  
Olivier Cheneval ◽  
Stephanie Chaousis ◽  
...  

ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor.


RSC Advances ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 668-674 ◽  
Author(s):  
Xiaoxiao Xu ◽  
Qingliang Xu ◽  
Fangling Chen ◽  
Juan Shi ◽  
Yuntian Liu ◽  
...  

μ-Conotoxin PIIIA, a peptide toxin isolated from Conus purpurascens, blocks the skeletal muscle voltage-gated sodium channel NaV1.4 with significant potency.


2012 ◽  
Vol 121 (5) ◽  
pp. 793-805 ◽  
Author(s):  
Catherine R. von Reyn ◽  
Rosalind E. Mott ◽  
Robert Siman ◽  
Douglas H. Smith ◽  
David F. Meaney

2010 ◽  
Vol 98 (3) ◽  
pp. 480a
Author(s):  
Radda Rusinova ◽  
Karl F. Herold ◽  
Roger E. Koeppe ◽  
Hugh C. Hemmings ◽  
Olaf S. Andersen

Sign in / Sign up

Export Citation Format

Share Document