Molecular Cancer
Latest Publications


TOTAL DOCUMENTS

2502
(FIVE YEARS 548)

H-INDEX

107
(FIVE YEARS 46)

Published By Springer (Biomed Central Ltd.)

1476-4598, 1476-4598

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Rachid El Fatimy ◽  
Yanhong Zhang ◽  
Evgeny Deforzh ◽  
Mahalakshmi Ramadas ◽  
Harini Saravanan ◽  
...  

Abstract Background miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b. However, despite the therapeutic potential of miR-10b targeting, this miRNA’s poorly investigated and largely unconventional properties hamper the clinical translation. Methods We utilized Covalent Ligation of Endogenous Argonaute-bound RNAs and their high-throughput RNA sequencing to identify miR-10b interactome and a combination of biochemical and imaging approaches for target validation. They included Crosslinking and RNA immunoprecipitation with spliceosomal proteins, a combination of miRNA FISH with protein immunofluorescence in glioma cells and patient-derived tumors, native Northern blotting, and the transcriptome-wide analysis of alternative splicing. Results We demonstrate that miR-10b binds to U6 snRNA, a core component of the spliceosomal machinery. We provide evidence of the direct binding between miR-10b and U6, in situ imaging of miR-10b and U6 co-localization in glioma cells and tumors, and biochemical co-isolation of miR-10b with the components of the spliceosome. We further demonstrate that miR-10b modulates U6 N-6-adenosine methylation and pseudouridylation, U6 binding to splicing factors SART3 and PRPF8, and regulates U6 stability, conformation, and levels. These effects on U6 result in global splicing alterations, exemplified by the altered ratio of the isoforms of a small GTPase CDC42, reduced overall CDC42 levels, and downstream CDC42 -mediated effects on cell viability. Conclusions We identified U6 snRNA, the key RNA component of the spliceosome, as the top miR-10b target in glioblastoma. We, therefore, present an unexpected intersection of the miRNA and splicing machineries and a new nuclear function for a major cancer-associated miRNA.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziwen Pan ◽  
Rongrong Zhao ◽  
Boyan Li ◽  
Yanhua Qi ◽  
Wei Qiu ◽  
...  

Abstract Background Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. Methods CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. Results We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. Conclusions This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Reza Hosseini ◽  
Hamzeh Sarvnaz ◽  
Maedeh Arabpour ◽  
Samira Molaei Ramshe ◽  
Leila Asef-Kabiri ◽  
...  

AbstractTumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Wang ◽  
Chunjie Wu ◽  
Yu Du ◽  
Zhongwei Li ◽  
Minle Li ◽  
...  

AbstractCircular RNAs (circRNAs) are classified as noncoding RNAs because they are devoid of a 5’ end cap and a 3’ end poly (A) tail necessary for cap-dependent translation. However, increasing numbers of translated circRNAs identified through high-throughput RNA sequencing overlapping with polysome profiling indicate that this rule is being broken. CircRNAs can be translated in cap-independent mechanism, including IRES (internal ribosome entry site)-initiated pattern, MIRES (m6A internal ribosome entry site) -initiated patterns, and rolling translation mechanism (RCA). CircRNA-encoded proteins harbour diverse functions similar to or different from host proteins. In addition, they are linked to the modulation of human disease including carcinomas and noncarcinomas. CircRNA-related translatomics and proteomics have attracted increasing attention. This review discusses the progress and exclusive characteristics of circRNA translation and highlights the latest mechanisms and regulation of circRNA translatomics. Furthermore, we summarize the extensive functions and mechanisms of circRNA-derived proteins in human diseases, which contribute to a better understanding of intricate noncanonical circRNA translatomics and proteomics and their therapeutic potential in human diseases.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu-Zhong Yu ◽  
Dao-Jun Lv ◽  
Chong Wang ◽  
Xian-Lu Song ◽  
Tao Xie ◽  
...  

Abstract Background More and more studies have shown that circular RNAs (circRNAs) play a critical regulatory role in many cancers. However, the potential molecular mechanism of circRNAs in prostate cancer (PCa) remains largely unknown. Methods Differentially expressed circRNAs were identified by RNA sequencing. The expression of hsa_circ_0003258 was evaluated using quantitative real-time PCR and RNA in situ hybridization. The impacts of hsa_circ_0003258 on the metastasis of PCa cells were investigated by a series of in vitro and in vivo assays. Lastly, the underlying mechanism of hsa_circ_0003258 was revealed by Western blot, biotin-labeled RNA pulldown, RNA immunoprecipitation, luciferase assays and rescue experiments. Results Increased expression of hsa_circ_0003258 was found in PCa tissues and was associated with advanced TNM stage and ISUP grade. Overexpression of hsa_circ_0003258 promoted PCa cell migration by inducing epithelial mesenchymal transformation (EMT) in vitro as well as tumor metastasis in vivo, while knockdown of hsa_circ_0003258 exerts the opposite effect. Mechanistically, hsa_circ_0003258 could elevate the expression of Rho GTPase activating protein 5 (ARHGAP5) via sponging miR-653-5p. In addition, hsa_circ_0003258 physically binds to insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) in the cytoplasm and enhanced HDAC4 mRNA stability, in which it activates ERK signalling pathway, then triggers EMT programming and finally accelerates the metastasis of PCa. Conclusions Upregulation of hsa_circ_0003258 drives tumor progression through both hsa_circ_0003258/miR-653-5p/ARHGAP5 axis and hsa_circ_0003258/IGF2BP3 /HDAC4 axis. Hsa_circ_0003258 may act as a promising biomarker for metastasis of PCa and an attractive target for PCa intervention.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Chi Hin Wong ◽  
Ut Kei Lou ◽  
Frederic Khe-Cheong Fung ◽  
Joanna H. M. Tong ◽  
Chang-hua Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) play important roles in many biological processes. However, the detailed mechanism underlying the critical roles of circRNAs in cancer remains largely unexplored. We aim to explore the molecular mechanisms of circRTN4 with critical roles in pancreatic ductal adenocarcinoma (PDAC). Methods CircRTN4 expression level was examined in PDAC primary tumors. The oncogenic roles of circRTN4 in PDAC tumor growth and metastasis were studied in mouse tumor models. Bioinformatics analysis, luciferase assay and miRNA pulldown assay were performed to study the novel circRTN4-miRNA-lncRNA pathway. To identify circRTN4-interacting proteins, we performed circRNA-pulldown and mass spectrometry in PDAC cells. Protein stability assay and 3-Dimensional structure modeling were performed to reveal the role of circRTN4 in stabilizing RAB11FIP1. Results CircRTN4 was significantly upregulated in primary tumors from PDAC patients. In vitro and in vivo functional studies revealed that circRTN4 promoted PDAC tumor growth and liver metastasis. Mechanistically, circRTN4 interacted with tumor suppressor miR-497-5p in PDAC cells. CircRTN4 knockdown upregulated miR-497-5p to inhibit the oncogenic lncRNA HOTTIP expression. Furthermore, we identified critical circRTN4-intercting proteins by circRNA-pulldown in PDAC cells. CircRTN4 interacted with important epithelial-mesenchymal transition (EMT)- driver RAB11FIP1 to block its ubiquitination site. We found that circRTN4 knockdown promoted the degradation of RAB11FIP1 by increasing its ubiquitination. Also, circRTN4 knockdown inhibited the expression of RAB11FIP1-regulating EMT-markers Slug, Snai1, Twist, Zeb1 and N-cadherin in PDAC. Conclusion The upregulated circRTN4 promotes tumor growth and liver metastasis in PDAC through the novel circRTN4-miR-497-5p-HOTTIP pathway. Also, circRTN4 stabilizes RAB11FIP1 to contribute EMT. Graphical abstract


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiran Chen ◽  
Li Li ◽  
Jie Lan ◽  
Yang Cui ◽  
Xiaosong Rao ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is among the most common forms of cancer and is associated with poor patient outcomes. The emergence of therapeutic resistance has hampered the efficacy of targeted treatments employed to treat HCC patients to date. In this study, we conducted a series of CRISPR/Cas9 screens to identify genes associated with synthetic lethality capable of improving HCC patient clinical responses. Methods CRISPR-based loss-of-function genetic screens were used to target 18,053 protein-coding genes in HCC cells to identify chemotherapy-related synthetic lethal genes in these cells. Synergistic effects were analyzed through in vitro and in vivo analyses, while related mechanisms were explored through RNA-seq and metabolomics analyses. Potential inhibitors of identified genetic targets were selected through high-throughput virtual screening. Results The inhibition of phosphoseryl-tRNA kinase (PSTK) was found to increase HCC cell sensitivity to chemotherapeutic treatment. PSTK was associated with the suppression of chemotherapy-induced ferroptosis in HCC cells, and the depletion of PSTK resulted in the inactivation of glutathione peroxidative 4 (GPX4) and the disruption of glutathione (GSH) metabolism owing to the inhibition of selenocysteine and cysteine synthesis, thus enhancing the induction of ferroptosis upon targeted chemotherapeutic treatment. Punicalin, an agent used to treat hepatitis B virus (HBV), was identified as a possible PSTK inhibitor that exhibited synergistic efficacy when applied together with Sorafenib to treat HCC in vitro and in vivo. Conclusions These results highlight a key role for PSTK as a mediator of resistance to targeted therapeutic treatment in HCC cells that functions by suppressing ferroptotic induction. PSTK inhibitors may thus represent ideal candidates for overcoming drug resistance in HCC.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Florencia Cidre-Aranaz ◽  
Jing Li ◽  
Tilman L. B. Hölting ◽  
Martin F. Orth ◽  
Roland Imle ◽  
...  

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yun Ma ◽  
Guijie Guo ◽  
Tingting Li ◽  
Faxin Wen ◽  
Jianling Yang ◽  
...  

Abstract Background Dysregulation of long noncoding RNAs (lncRNAs) has been linked to various human cancers. Bcr-Abl oncogene that results from a reciprocal translocation between human chromosome 9 and 22, is associated with several hematological malignancies. However, the role of lncRNAs in Bcr-Abl-induced leukemia remains largely unexplored. Methods LncRNA cDNA microarray was employed to identify key lncRNAs involved in Bcr-Abl-mediated cellular transformation. Abl-transformed cell survival and xenografted tumor growth in mice were evaluated to dissect the role of imatinib-upregulated lncRNA 1 (IUR1) in Abl-induced tumorigenesis. Primary bone marrow transformation and in vivo leukemia transplant using lncRNA-IUR1 knockout (KO) mice were further conducted to address the functional relevance of lncRNA-IUR1 in Abl-mediated leukemia. Transcriptome RNA-seq and Western blotting were performed to determine the mechanisms by which lncRNA-IUR1 regulates Bcr-Abl-induced tumorigenesis. Results We identified lncRNA-IUR1 as a critical negative regulator of Bcr-Abl-induced tumorigenesis. LncRNA-IUR1 expressed in a very low level in Bcr-Abl-positive cells from chronic myeloid leukemia patients. Interestingly, it was significantly induced in Abl-positive leukemic cells treated by imatinib. Depletion of lncRNA-IUR1 promoted survival of Abl-transformed human leukemic cells in experiments in vitro and xenografted tumor growth in mice, whereas ectopic expression of lncRNA-IUR1 sensitized the cells to apoptosis and suppressed tumor growth. In concert, silencing murine lncRNA-IUR1 in Abl-transformed cells accelerated cell survival and the development of leukemia in mice. Furthermore, lncRNA-IUR1 deficient mice were generated, and we observed that knockout of murine lncRNA-IUR1 facilitated Bcr-Abl-mediated primary bone marrow transformation. Moreover, animal leukemia model revealed that lncRNA-IUR1 deficiency promoted Abl-transformed cell survival and development of leukemia in mice. Mechanistically, we demonstrated that lncRNA-IUR1 suppressed Bcr-Abl-induced tumorigenesis through negatively regulating STAT5-mediated GATA3 expression. Conclusions These findings unveil an inhibitory role of lncRNA-IUR1 in Abl-mediated cellular transformation, and provide new insights into molecular mechanisms underlying Abl-induced leukemogenesis.


Sign in / Sign up

Export Citation Format

Share Document