peptide toxin
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 30)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Junyan Liu ◽  
Emily Sansevere ◽  
Katherine Barker ◽  
Hubertine Willems ◽  
David Lowes ◽  
...  

Background: Candida albicans is the primary etiological agent of vulvovaginal candidiasis (VVC) and exerts its pathogenicity through secretion of the peptide toxin candidalysin encoded by the ECE1 gene. A highly conserved variant ECE1 sequence exists across a diverse set of clinical isolates. Thus, we sought to determine the relative pathogenicity and mechanism(s) associated with this alternative ECE1 allele. Methods: Isogenic strains harboring WT or variant ECE1 sequences were engineered in an Δ/Δece1 background. After confirmation of equivalent expression by qPCR, pathogenicity of strains were tested using in vitro epithelial cell and in vivo VVC models of infection and LDH, IL-1β, neutrophil levels monitored. Follow up studies using synthetic candidalysin peptide were also performed. Lastly, a panel of ECE1 chimeras were constructed to assess potential processing defects and detected by a novel HiBiT-tagging approach. Results: Strains transformed with either the variant full length ECE1 or candidalysin allele, as compared to the WT sequence, demonstrated significantly reduced immunopathogenicity during in vitro or in vivo infection despite equivalent fungal burden. Interestingly, epithelial challenge with WT or variant synthetic peptide revealed similar capacity to elicit damage and IL-1β. Allele profiling and ECE1 chimera experiments demonstrated that defects in pathogenicity are at least partly due to inefficient ECE1 processing at the peptide 2-peptide 3 junction. Discussion: The ECE1 gene displays conserved polymorphisms that alter candidalysin secretion and strain pathogenicity. Future work is focused on determining specific amino acid sequences that contribute to these affects across clinical isolates and disease states.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuijiao Peng ◽  
Minzhi Chen ◽  
Zhen Xiao ◽  
Xin Xiao ◽  
Sen Luo ◽  
...  

Venomous animals have evolved to produce peptide toxins that modulate the activity of voltage-gated sodium (Nav) channels. These specific modulators are powerful probes for investigating the structural and functional features of Nav channels. Here, we report the isolation and characterization of δ-theraphotoxin-Gr4b (Gr4b), a novel peptide toxin from the venom of the spider Grammostola rosea. Gr4b contains 37-amino acid residues with six cysteines forming three disulfide bonds. Patch-clamp analysis confirmed that Gr4b markedly slows the fast inactivation of Nav1.9 and inhibits the currents of Nav1.4 and Nav1.7, but does not affect Nav1.8. It was also found that Gr4b significantly shifts the steady-state activation and inactivation curves of Nav1.9 to the depolarization direction and increases the window current, which is consistent with the change in the ramp current. Furthermore, analysis of Nav1.9/Nav1.8 chimeric channels revealed that Gr4b preferentially binds to the voltage-sensor of domain III (DIII VSD) and has additional interactions with the DIV VSD. The site-directed mutagenesis analysis indicated that N1139 and L1143 in DIII S3-S4 linker participate in toxin binding. In sum, this study reports a novel spider peptide toxin that may slow the fast inactivation of Nav1.9 by binding to the new neurotoxin receptor site-DIII VSD. Taken together, these findings provide insight into the functional role of the Nav channel DIII VSD in fast inactivation and activation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Wang ◽  
Mengyao Ji ◽  
Bingqian Yuan ◽  
Anna Luo ◽  
Zhenyuan Jiang ◽  
...  

African swine fever virus (ASFV) is a large double-stranded DNA virus and causes high mortality in swine. ASFV can be transmitted by biological vectors, including soft ticks in genus Ornithodoros but not hard ticks. However, the underlying mechanisms evolved in the vectorial capacity of soft ticks are not well-understood. Here, we found that a defensin-like peptide toxin OPTX-1 identified from Ornithodoros papillipes inhibits the enzyme activity of the ASFV pS273R protease with a Ki=0.821±0.526μM and shows inhibitory activity on the replication of ASFV. The analogs of OPTX-1 from hard ticks show more inhibitory efficient on pS273R protease. Considering that ticks are blood-sucking animals, we tested the effects of OPTX-1 and its analogs on the coagulation system. At last, top 3D structures represented surface analyses of the binding sites of pS273R with different inhibitors that were obtained by molecular docking based on known structural information. In summary, our study provides evidence that different inhibitory efficiencies between soft tick-derived OPTX-1 and hard tick-derived defensin-like peptides may determine the vector and reservoir competence of ticks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhen Xiao ◽  
Piao Zhao ◽  
Xiangyue Wu ◽  
Xiangjin Kong ◽  
Ruiwen Wang ◽  
...  

The naturally occurred peptide toxins from animal venoms are valuable pharmacological tools in exploring the structure-function relationships of ion channels. Herein we have identified the peptide toxin κ-LhTx-1 from the venom of spider Pandercetes sp (the Lichen huntsman spider) as a novel selective antagonist of the KV4 family potassium channels. κ-LhTx-1 is a gating-modifier toxin impeded KV4 channels’ voltage sensor activation, and mutation analysis has confirmed its binding site on channels’ S3b region. Interestingly, κ-LhTx-1 differently modulated the gating of KV4 channels, as revealed by toxin inhibiting KV4.2/4.3 with much more stronger voltage-dependence than that for KV4.1. We proposed that κ-LhTx-1 trapped the voltage sensor of KV4.1 in a much more stable resting state than that for KV4.2/4.3 and further explored the underlying mechanism. Swapping the non-conserved S3b segments between KV4.1(280FVPK283) and KV4.3(275VMTN278) fully reversed their voltage-dependence phenotypes in inhibition by κ-LhTx-1, and intensive mutation analysis has identified P282 in KV4.1, D281 in KV4.2 and N278 in KV4.3 being the key residues. Furthermore, the last two residues in this segment of each KV4 channel (P282/K283 in KV4.1, T280/D281 in KV4.2 and T277/N278 in KV4.3) likely worked synergistically as revealed by our combinatorial mutations analysis. The present study has clarified the molecular basis in KV4 channels for their different modulations by κ-LhTx-1, which have advanced our understanding on KV4 channels’ structure features. Moreover, κ-LhTx-1 might be useful in developing anti-arrhythmic drugs given its high affinity, high selectivity and unique action mode in interacting with the KV4.2/4.3 channels.


2021 ◽  
Vol 120 (3) ◽  
pp. 144a
Author(s):  
Diego Lopez Mateos ◽  
Vladimir Yarov-Yarovoy

Neuropeptides ◽  
2021 ◽  
Vol 85 ◽  
pp. 102094
Author(s):  
Claudia Pedron ◽  
Flavia Tasmin Techera Antunes ◽  
Isadora Nunes Rebelo ◽  
Maria Martha Campos ◽  
Áurea Pandolfo Correa ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kazuki Matsumura ◽  
Takushi Shimomura ◽  
Yoshihiro Kubo ◽  
Takayuki Oka ◽  
Naohiro Kobayashi ◽  
...  

Abstract Background Human ether-à-go-go-related gene potassium channel 1 (hERG) is a voltage-gated potassium channel, the voltage-sensing domain (VSD) of which is targeted by a gating-modifier toxin, APETx1. APETx1 is a 42-residue peptide toxin of sea anemone Anthopleura elegantissima and inhibits hERG by stabilizing the resting state. A previous study that conducted cysteine-scanning analysis of hERG identified two residues in the S3-S4 region of the VSD that play important roles in hERG inhibition by APETx1. However, mutational analysis of APETx1 could not be conducted as only natural resources have been available until now. Therefore, it remains unclear where and how APETx1 interacts with the VSD in the resting state. Results We established a method for preparing recombinant APETx1 and determined the NMR structure of the recombinant APETx1, which is structurally equivalent to the natural product. Electrophysiological analyses using wild type and mutants of APETx1 and hERG revealed that their hydrophobic residues, F15, Y32, F33, and L34, in APETx1, and F508 and I521 in hERG, in addition to a previously reported acidic hERG residue, E518, play key roles in the inhibition of hERG by APETx1. Our hypothetical docking models of the APETx1-VSD complex satisfied the results of mutational analysis. Conclusions The present study identified the key residues of APETx1 and hERG that are involved in hERG inhibition by APETx1. These results would help advance understanding of the inhibitory mechanism of APETx1, which could provide a structural basis for designing novel ligands targeting the VSDs of KV channels.


Sign in / Sign up

Export Citation Format

Share Document