scholarly journals The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus

2020 ◽  
Vol 295 (18) ◽  
pp. 6053-6063 ◽  
Author(s):  
Arnab Basu ◽  
Kathryn E. Shields ◽  
Mee-Ngan F. Yap

The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.

2003 ◽  
Vol 278 (48) ◽  
pp. 48041-48050 ◽  
Author(s):  
Michael C. Kiel ◽  
V. Samuel Raj ◽  
Hideko Kaji ◽  
Akira Kaji

FEBS Journal ◽  
2010 ◽  
Vol 277 (18) ◽  
pp. 3789-3803 ◽  
Author(s):  
Yang Chen ◽  
Ravi Kiran Koripella ◽  
Suparna Sanyal ◽  
Maria Selmer

2019 ◽  
Vol 401 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Marina V. Rodnina ◽  
Frank Peske ◽  
Bee-Zen Peng ◽  
Riccardo Belardinelli ◽  
Wolfgang Wintermeyer

Abstract Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.


Sign in / Sign up

Export Citation Format

Share Document