hydrophobic interaction chromatography
Recently Published Documents


TOTAL DOCUMENTS

757
(FIVE YEARS 76)

H-INDEX

59
(FIVE YEARS 7)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2135
Author(s):  
Elena Lietta ◽  
Alessandro Pieri ◽  
Elisa Innocenti ◽  
Roberto Pisano ◽  
Marco Vanni ◽  
...  

Chromatography is a widely used separation process for purification of biopharmaceuticals that is able to obtain high purities and concentrations. The phenomena that occur during separation, mass transfer and adsorption are quite complex. To better understand these phenomena and their mechanisms, multi-component adsorption isotherms must be investigated. High-throughput methodologies are a very powerful tool to determine adsorption isotherms and they waste very small amounts of sample and chemicals, but the quantification of component concentrations is a real bottleneck in multi-component isotherm determination. The behavior of bovine serum albumin, Corynebacterium diphtheriae CRM197 protein and lysozyme, selected as model proteins in binary mixtures with hydrophobic resin, is investigated here. In this work we propose a new method for determining multi-component adsorption isotherms using high-throughput experiments with filter plates, by exploiting microfluidic capillary electrophoresis. The precision and accuracy of the microfluidic capillary electrophoresis platform were evaluated in order to assess the procedure; they were both found to be high and the procedure is thus reliable in determining adsorption isotherms for binary mixtures. Multi-component adsorption isotherms were determined with a totally high-throughput procedure that turned out to be a very fast and powerful tool. The same procedure can be applied to every kind of high-throughput screening.


2021 ◽  
Vol 908 (1) ◽  
pp. 012034
Author(s):  
E Yu Milkheev ◽  
Yu B Tsybenov

Abstract Humic substances of soils are considered as a multicomponent system of amphiphilic (exhibiting both hydrophilic and hydrophobic properties) substances. Humic substances from soils of different genesis in the south of the Vitim Plateau (quasigley chernozem – Turbic Chernozem Molliglossic and brown soil – Stagnic Phaeozem Molliglossic) were studied. Using the hydrophobic interaction chromatography on Octyl-Sepharose® CL-4B, we separated a mixture of humic (HAs) and fulvic acids (FAs) due to their different ability to enter into hydrophobic interactions with the gel matrix. A higher percentage of hydrophobic compounds was revealed in HAs of quasigley chernozem, compared to HAs of brown soils, and FAs. The fulvic acid sample showed a lower capacity for hydrophobic interactions than the humic acid sample.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 943
Author(s):  
ZMG Sarwar Jahangir ◽  
Arleta Helena Marnik

Background: The SARS-CoV-2 pandemic is a global threat to humans and the world’s economy. Effective and safe vaccines against this virus are essential to control and eradicate the pandemic. The currently applied vaccines carry SARS-CoV-2 spike-protein mRNA/cDNA. These vaccines go through several cellular processes in the recipients for producing antigens. On the contrary, the SARS-CoV-2 RBD (receptor binding domain)-protein is an antigen. It will directly stimulate antibody production against SARS-CoV-2. Hence, we propose to produce SARS-CoV-2 RBD-protein as a fast acting, effective and safe vaccine.  Methods: We propose to reconstruct a plasmid carrying three types of  DNA sequences: RBD cDNA, FP (fusion peptide) DNA and sfGFP(superfolder green fluorescent protein), cDNA creating the RBD-FP-sfGFP DNA within an orf (open reading frame). Escherichia coli, C2566H, transformed with the reconstructed plasmid will express RBD-FP-sfGFP fusion protein producing green fluorescent cfu (colony forming unit). The RBD-protein will be separated from the sfGFP using an FP specific enterokinase, and eluted by HIC (hydrophobic interaction chromatography), detected with a BioVision Elisa kit, and quantified by spectrophotometry at UV280nm.  Results: The plasmid reconstruct will carry ampr (ampicillin-resistant) gene as a selective marker and a T7 promoter controlling the expression of RBD-FP-sfGFP fusion protein. The transformed Escherichia coli will efficiently express the RBD-FP-sfGFP fusion protein. The highly efficient sfGFP fused within the RBD-FP-sfGFP will produce green fluorescent cfu. The RBD-FP-sfGFP protein extract from the green cfu, digested by enterokinase and separated by the HIC will produce pure RBD protein.  Conclusion: A positive BioVision ELISA test detects <10 pg RBD protein/ml of the sample. A larger sample of the purified RBD protein can be used as a vaccine following a standard formulation and safety protocols. Once administered, the RBD protein will stimulate antibody production against the SARS-CoV-2 virus. The RBD protein has no potential to recombine with human genome.


2021 ◽  
Vol 9 (9) ◽  
pp. 1927
Author(s):  
Khanh Minh Chau ◽  
Thi Thu Hao Van ◽  
Dong Van Quyen ◽  
Hung Dinh Le ◽  
Trinh Hoai Thi Phan ◽  
...  

Vibriosis in farmed animals is a serious threat to aquaculture worldwide. Using probiotics and anti-Vibrio antimicrobial substances in aquaculture systems can be a means of preventing Vibrio infections. Therefore, we aimed to characterize and compare 16 potential anti-Vibrio probiotics (Vi+) isolated from marine sponges and fish intestines collected from the Vietnam Sea, as well as an anti-Vibrio bacteriocin to fully explore their application potentials. 16S rRNA sequencing confirmed all Vi+ to be Bacillus species with different strain variants across two sample types. An obvious antimicrobial spectrum toward Gram-negative bacteria was observed from intestinal Vi+ compared to sponge-associated Vi+. The reason was the higher gene frequency of two antimicrobial compounds, non-ribosomal peptides (NRPS) and polyketide type-I (PKS-I) from intestinal Vi+ (66.7%) than sponge-associated Vi+ (14.3% and 0%, respectively). Additionally, a three-step procedure was performed to purify an anti-Vibrio bacteriocin produced by B. methylotrophicus NTBD1, including (i) solvent extraction of bacteriocin from cells, (ii) hydrophobic interaction chromatography, and (iii) reverse-phase HPLC. The bacteriocin had a molecular weight of ~2–5 kDa, was sensitive to proteolysis and thermally stable, and showed a broad antimicrobial spectrum, all of which are essential properties for promising feed additives. This study provides necessary information of the potential of probiotic Bacillus species with anti-Vibrio antimicrobial properties to study their further use in sustainable aquaculture.


Sign in / Sign up

Export Citation Format

Share Document