scholarly journals The Last Enzyme of the De Novo Purine Synthesis Pathway 5-aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC) Plays a Central Role in Insulin Signaling and the Golgi/Endosomes Protein Network

2015 ◽  
Vol 14 (4) ◽  
pp. 1079-1092 ◽  
Author(s):  
Martial Boutchueng-Djidjou ◽  
Gabriel Collard-Simard ◽  
Suzanne Fortier ◽  
Sébastien S. Hébert ◽  
Isabelle Kelly ◽  
...  
1989 ◽  
Vol 264 (1) ◽  
pp. 328-333 ◽  
Author(s):  
G P Beardsley ◽  
B A Moroson ◽  
E C Taylor ◽  
R G Moran

2020 ◽  
Author(s):  
Kasper W. ter Horst ◽  
Daniel F. Vatner ◽  
Dongyan Zhang ◽  
Gary W. Cline ◽  
Mariette T. Ackermans ◽  
...  

<b>Objective</b>: Both glucose and triglyceride production are increased in Type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). For decades, the leading hypothesis to explain these paradoxical observations has been selective hepatic insulin resistance, wherein insulin drives <i>de novo</i> lipogenesis (DNL), while failing to suppress glucose production. Here, we aimed to test this hypothesis in humans. <p><b>Research Design and Methods</b>: We recruited obese subjects who met criteria for bariatric surgery with (n=16) or without (n=15) NAFLD and assessed: i) insulin-mediated regulation of hepatic and peripheral glucose metabolism using hyperinsulinemic-euglycemic clamps with [6,6-<sup>2</sup>H<sub>2</sub>]glucose, ii) fasting and carbohydrate-driven hepatic DNL using deuterated water (<sup>2</sup>H<sub>2</sub>O), and iii) hepatocellular insulin signaling in liver biopsies collected during bariatric surgery.</p> <p><b>Results</b>: As compared with subjects without NAFLD, subjects with NAFLD demonstrated impaired insulin-mediated suppression of glucose production and attenuated -not increased- glucose-stimulated/high-insulin lipogenesis. Fructose-stimulated/low-insulin lipogenesis was intact. Hepatocellular insulin signaling, assessed for the first time in humans, exhibited a proximal block in insulin-resistant subjects: signaling was attenuated from the level of the insulin receptor through both glucose <i>and</i> lipogenesis pathways. The carbohydrate-regulated lipogenic transcription factor <i>ChREBP</i> was increased in subjects with NAFLD. </p> <b>Conclusions</b>: Acute increases in lipogenesis in humans with NAFLD are not explained by altered molecular regulation of lipogenesis through a paradoxical increase in lipogenic insulin action; rather, increases in lipogenic substrate availability may be the key. <a></a>


1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


1969 ◽  
Vol 47 (9) ◽  
pp. 839-845 ◽  
Author(s):  
D. Trachewsky ◽  
R. M. Johnstone

In extracts of Ehrlich ascites cells the synthesis of α-N-formylglycinamide ribonucleotide (FGAR), an early intermediate in de novo purine synthesis, is enhanced by the presence of ammonium ions. Under these experimental conditions glutamine participation in FGAR formation is not obligatory. Ribonucleotides, deoxyribonucleotides, and purine analogues which inhibit glutamine-dependent FGAR synthesis also inhibit ammonium-ion-dependent FGAR synthesis. 3′-Ribonucleotides do not inhibit purine precursor formation from ammonium ions or from glutamine.


Sign in / Sign up

Export Citation Format

Share Document