metabolic reprogramming
Recently Published Documents





2022 ◽  
Charalampos Papadopoulos ◽  
Eleftheria Spourita ◽  
Konstantinos Mimidis ◽  
George Kolios ◽  
Ioannis Tentes ◽  

Non-alcoholic steatohepatitis (NASH) constitutes a significant cause of deaths, liver transplantations and economic costs worldwide. Despite extended research, investigations on the role of erythrocytes are scarce. Red blood cells from experimental animals and human patients with NASH, present phosphatidylserine exposure which is then recognized by Kupffer cells. This event leads to erythrophagocytosis, and amplification of inflammation through iron disposition. In addition, it has been shown that erythrocytes from NASH patients release the chemokine MCP1, leading to increased TNF-α release from macrophages RAW 264.7. However, erythrophagocytosis can also be caused by reduced CD47 levels. In addition, increased MCP1 release could be either signal-induced, or caused by higher MCP1 levels on the erythrocyte membrane. Finally, erythrocyte efferocytosis could provide additional inflammatory metabolites. In this study, we measured the erythrocyte membrane levels of CD47 and MCP1 by ELISA, and cholesterol and sphingosine with thin-layer chromatography. 18 patients (8 men, 10 women aged 56.7+/-11.5 years) and 14 healthy controls (7 men, 7 women aged 39.3+/-15.5 years) participated in our study. The erythrocyte CD47 levels were decreased in the erythrocyte membranes of NASH patients (844+/-409 pg/ml) compared to healthy controls (2969+/-1936 pg/ml) with P(Healthy>NAFLD)=99.1%, while the levels of MCP1 were increased in NASH patients (389+/-255 pg/ml), compared to healthy controls (230+/-117 pg/ml) with P(Healthy<NAFLD)=88.9%. Moreover, in erythrocyte membranes there was a statistically significant accumulation of sphingosine and cholesterol in NASH patients, compared to healthy controls. Our results imply that erythrocytes release chemotactic (find me signals) MCP1, while containing reduced (do not eat me signals) CD47. These molecules can lead to erythrophagocytosis. Next, increased (goodbye signals) sphingosine and cholesterol could augment inflammation by metabolic reprogramming.

Anna Sebestyén ◽  
Titanilla Dankó ◽  
Dániel Sztankovics ◽  
Dorottya Moldvai ◽  
Regina Raffay ◽  

AbstractDespite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.

2022 ◽  
pp. canres.1179.2021
Wen-Jie Zhu ◽  
Xu Chen ◽  
Xiang Yu Guo ◽  
Hai Ting Liu ◽  
Ran Ran Ma ◽  

2022 ◽  
Vol 2 ◽  
Daniela Frasca ◽  
Maria Romero ◽  
Denisse Garcia ◽  
Alain Diaz ◽  
Bonnie B. Blomberg

We have measured the secretion of autoimmune antibodies in plasma samples and in culture supernatants of blood-derived B cells from four groups of individuals: young lean (YL), elderly lean (EL), young obese (YO) and elderly obese (EO). We found secretion comparable in YO and EL individuals, suggesting that obesity accelerates age-associated defects in circulating B cells. To define at least one possible molecular pathway involved, we used an in vitro model in which B cells from YL and EL individuals have been stimulated with the Fatty Acid (FA) palmitate, the most common saturated FA in the human body. The rationale to use palmitate is that there is a chronic increase in circulating levels of palmitate, due to increased spontaneous lipolysis occurring during aging and obesity, and this may induce autoimmune B cells. Results herein show that in vitro incubation of B cells from YL and EL individuals with the FA palmitate induces mRNA expression of T-bet, the transcription factor for autoimmune antibodies, as well as secretion of autoimmune IgG antibodies, with B cells from YL individuals looking similar to B cells from EL individuals, confirming our initial hypothesis. The generation of autoimmune B cells in the presence of the FA palmitate was found to be associated with a metabolic reprogramming of B cells from both YL and EL individuals. These results altogether show the critical role of the FA palmitate in inducing human B cell immunosenescence and show for the first time the importance of metabolic pathways in this process.

2022 ◽  
Vol 8 ◽  
Na Zhou ◽  
Libao Liu ◽  
Rongjun Zou ◽  
Minghui Zou ◽  
Mingxia Zhang ◽  

Background: Tetralogy of Fallot (TOF) is the most common cyanotic heart disease. However, the association of cardiac metabolic reprogramming changes and underlying molecular mechanisms in TOF-related chronic myocardial hypoxia damage are still unclear.Methods: In this study, we combined microarray transcriptomics analysis with liquid chromatography tandem-mass spectrometry (LC–MS/MS) spectrum metabolomics analysis to establish the metabolic reprogramming that occurs in response to chronic hypoxia damage. Two Gene Expression Omnibus (GEO) datasets, GSE132176 and GSE141955, were downloaded to analyze the metabolic pathway in TOF. Then, a metabolomics analysis of the clinical samples (right atrial tissue and plasma) was performed. Additionally, an association analysis between differential metabolites and clinical phenotypes was performed. Next, four key genes related to sphingomyelin metabolism were screened and their expression was validated by real-time quantitative PCR (QT-PCR).Results: The gene set enrichment analysis (GSEA) showed that sphingolipid metabolism was downregulated in TOF and the metabolomics analysis showed that multiple sphingolipids were dysregulated. Additionally, genes related to sphingomyelin metabolism were identified. We found that four core genes, UDP-Glucose Ceramide Glucosyltransferase (UGCG), Sphingosine-1-Phosphate Phosphatase 2 (SGPP2), Fatty Acid 2-Hydroxylase (FA2H), and Sphingosine-1-Phosphate Phosphatase 1 (SGPP1), were downregulated in TOF.Conclusion: Sphingolipid metabolism was downregulated in TOF; however, the detailed mechanism needs further investigation.

2022 ◽  
pp. 2102303
Qiongyu Hao ◽  
Zhimin Huang ◽  
Qun Li ◽  
Dingxie Liu ◽  
Piwen Wang ◽  

2022 ◽  
Vol 11 ◽  
Yu-Ling Bin ◽  
Hong-Sai Hu ◽  
Feng Tian ◽  
Zhen-Hua Wen ◽  
Mei-Feng Yang ◽  

Worldwide, gastric cancer (GC) represents the fifth most common cancer for incidence and the third leading cause of death in developed countries. Despite the development of combination chemotherapies, the survival rates of GC patients remain unsatisfactory. The reprogramming of energy metabolism is a hallmark of cancer, especially increased dependence on aerobic glycolysis. In the present review, we summarized current evidence on how metabolic reprogramming in GC targets the tumor microenvironment, modulates metabolic networks and overcomes drug resistance. Preclinical and clinical studies on the combination of metabolic reprogramming targeted agents and conventional chemotherapeutics or molecularly targeted treatments [including vascular endothelial growth factor receptor (VEGFR) and HER2] and the value of biomarkers are examined. This deeper understanding of the molecular mechanisms underlying successful pharmacological combinations is crucial in finding the best-personalized treatment regimens for cancer patients.

2022 ◽  
Yasmin V Berchembrock ◽  
Bhuvan Pathak ◽  
Chandan Maurya ◽  
Flavia BS Botelho ◽  
Vibha Srivastava

Overexpression of Arabidopsis Dehydration Response Element Binding 1a (DREB1a) is a well-known approach for developing salinity, cold and/or drought stress tolerance. However, understanding of the genetic mechanisms associated with DREB1a expression in rice is generally limited. In this study, DREB1a associated early responses were investigated in a transgenic rice line harboring cold-inducible DREB1a at a gene stacked locus. While the function of other genes in the stacked locus was not relevant to stress tolerance, this study demonstrates DREB1a can be colocalized with other genes for multigenic trait enhancement. As expected, the transgenic lines displayed improved tolerance to salinity stress and water withholding when compared to non-transgenic controls. RNA sequencing and transcriptome analysis showed upregulation of complex transcriptional networks and metabolic reprogramming as DREB1a expression led to the upregulation of multiple transcription factor gene families, suppression of photosynthesis and induction of secondary metabolism. In addition to the detection of previously described mechanisms such as production of protective molecules, potentially novel pathways were also revealed. These include jasmonate, auxin, and ethylene signaling, induction of JAZ and WRKY regulons, trehalose synthesis and polyamine catabolism. These genes regulate various stress responses and ensure timely attenuation of the stress signal. Furthermore, genes associated with heat stress response were downregulated in DREB1a overexpressing lines, suggesting antagonism between heat and dehydration stress pathways. In summary, through a complex transcriptional network, multiple stress signaling pathways are induced by DREB1a that presumably lead to early perception and rapid response towards stress tolerance as well as attenuation of the signal to prevent deleterious effects of the runoff response.

2022 ◽  
Vol 5 (1) ◽  
Flora Mikaeloff ◽  
Sara Svensson Akusjärvi ◽  
George Mondinde Ikomey ◽  
Shuba Krishnan ◽  
Maike Sperk ◽  

AbstractDespite successful combination antiretroviral therapy (cART), persistent low-grade immune activation together with inflammation and toxic antiretroviral drugs can lead to long-lasting metabolic flexibility and adaptation in people living with HIV (PLWH). Our study investigated alterations in the plasma metabolic profiles by comparing PLWH on long-term cART(>5 years) and matched HIV-negative controls (HC) in two cohorts from low- and middle-income countries (LMIC), Cameroon, and India, respectively, to understand the system-level dysregulation in HIV-infection. Using untargeted and targeted LC-MS/MS-based metabolic profiling and applying advanced system biology methods, an altered amino acid metabolism, more specifically to glutaminolysis in PLWH than HC were reported. A significantly lower level of neurosteroids was observed in both cohorts and could potentiate neurological impairments in PLWH. Further, modulation of cellular glutaminolysis promoted increased cell death and latency reversal in pre-monocytic HIV-1 latent cell model U1, which may be essential for the clearance of the inducible reservoir in HIV-integrated cells.

Min-Sub Lee ◽  
Steven J. Bensinger

AbstractCholesterol is a critical lipid for all mammalian cells, ensuring proper membrane integrity, fluidity, and biochemical function. Accumulating evidence indicates that macrophages rapidly and profoundly reprogram their cholesterol metabolism in response to activation signals to support host defense processes. However, our understanding of the molecular details underlying how and why cholesterol homeostasis is specifically reshaped during immune responses remains less well understood. This review discusses our current knowledge of cellular cholesterol homeostatic machinery and introduces emerging concepts regarding how plasma membrane cholesterol is partitioned into distinct pools. We then discuss how proinflammatory signals can markedly reshape the cholesterol metabolism of macrophages, with a focus on the differences between MyD88-dependent pattern recognition receptors and the interferon signaling pathway. We also discuss recent work investigating the capacity of these proinflammatory signals to selectively reshape plasma membrane cholesterol homeostasis. We examine how these changes in plasma membrane cholesterol metabolism influence sensitivity to a set of microbial pore-forming toxins known as cholesterol-dependent cytolysins that specifically target cholesterol for their effector functions. We also discuss whether lipid metabolic reprogramming can be leveraged for therapy to mitigate tissue damage mediated by cholesterol-dependent cytolysins in necrotizing fasciitis and other related infections. We expect that advancing our understanding of the crosstalk between metabolism and innate immunity will help explain how inflammation underlies metabolic diseases and highlight pathways that could be targeted to normalize metabolic homeostasis in disease states.

Sign in / Sign up

Export Citation Format

Share Document