scholarly journals Metabolism of ornithine, α-ketoglutarate and arginine in isolated perfused rat liver

1995 ◽  
Vol 73 (2) ◽  
pp. 227-239 ◽  
Author(s):  
Jean Pascal De Bandt ◽  
Luc Cynober ◽  
Soo Kyung Lim ◽  
Colette Coudray-Lucas ◽  
Raoul Poupon ◽  
...  

Ornithine (Orn; α-ketoglutarate (αKG) salt) and arginine (Arg) supplementation of enteral diets has been advocated in the treatment of hypercatabolism of trauma patients, but both compounds are subject to extensive hepatic metabolism. To compare the metabolism of these two compounds and to evaluate the possible influence of the αKG moiety, livers were perfused with αKG, Orn, ornithine α-ketoglutarate (OKG) or Arg (n 6 in each group) for 1 h. Arg uptake was nearly fourfold higher than Orn uptake (690 (SD 162) ν. 178 (SD 30) nmol/min per g liver), and Orn uptake was not modified by αKG. Orn was totally metabolized by the liver, whereas Arg led to Orn release (408 (SD 159) nmol/min per g liver) and a threefold stimulation of urea production (Arg 1·44 (SD 0·22) ν. Orn 0·45 (SD 0.09) μol/min per g liver). αKG alone only increased hepatic aspartate uptake but, when associated with Orn as OKG, it led to an increase in giutamate release and in proiine content in the liver and to a decrease in proiine uptake. From these findings we conclude that (1) Arg load is extensively metabolized by the liver, inducing urea production, (2) in enteral use, Orn supplementation appears preferable to Arg as it is less ureogenic (as also recently demonstrated in vivo in stressed rats receiving isomolar amounts of Arg and Orn), (3) the liver participates in the Orn-αKG metabolic interaction, mostly in proiine metabolism, which occurs in the splanchnic area.

1978 ◽  
Vol 176 (3) ◽  
pp. 959-965 ◽  
Author(s):  
Gerard J. Mulder ◽  
Katja Keulemans

1. The metabolism of inorganic [35S]sulphate (Na235SO4) was studied in the isolated perfused rat liver at three initial concentrations of inorganic sulphate in the perfusion medium (0, 0.65 and 1.30mm), in relation to sulphation and glucuronidation of a phenolic drug, harmol (7-hydroxy-1-methyl-9H-pyrido[3,4-b]indole). 2. [35S]Sulphate rapidly equilibrated with endogenous sulphate in the liver. It was excreted in bile and reached, at the lowest concentration in the perfusion medium, concentrations in bile that were much higher than those in the perfusion medium; at the higher sulphate concentrations, these concentrations were equal. The physiological concentration of inorganic sulphate in the liver, available for sulphation of drugs, is similar to the plasma concentration. 3. At zero initial inorganic sulphate in the perfusion medium, the rate of sulphation was very low and harmol was mainly glucuronidated. At 0.65mm-sulphate glucuronidation was much decreased and considerable sulphation took place, indicating efficient competition of conjugation by sulphation. At 1.30mm-sulphate the sulphation increased still further. 4. The results suggest that an important factor in sulphation is the relatively high Km of synthesis of adenosine 3′-phosphate 5′-sulphatophosphate (the co-substrate of sulphation) for inorganic sulphate, which is of the order of the plasma concentration of inorganic sulphate. The steady-state adenosine 3′-phosphate 5′-sulphatophosphate concentration may determine the rate of sulphate conjugation of drugs in the rat in vivo.


1976 ◽  
Vol 231 (1) ◽  
pp. 258-264 ◽  
Author(s):  
BJ Buchanan ◽  
JP Filkins

Endotoxin clearances in vivo and by the isolated perfused rat liver were evaluated via bioassay in lead-sensitized rats. A linear relationship between the probit of shock lethality and the endotoxin dose in the probit range of 4-6 was validated. Endotoxin clearance in normal, fed rats displayed a linear relationship between the logarithm of the blood endotoxin concentration and time throughout the period of 15-240 min at doses of 500 and 1,000 mug/ rat; the half-time values were 58-63 min. Decreasing the endotoxin dose to 250 mug resulted in multiphasic clearance curves. Induction of tolerance to endotoxin resulted in marked acceleration of endotoxin clearance. Endotoxin clearance from the isolated perfused rat liver was not influenced by serum or rat blood as compared to clearance from a balanced salt solution. These data suggest that a physiologically stressful dose of endotoxin is slowly cleared from the blood and, therefore, circulates for prolonged periods.


1960 ◽  
Vol 199 (3) ◽  
pp. 395-399 ◽  
Author(s):  
Alvin S. Ostashever ◽  
Irving Gray ◽  
Samuel Graff

The use of the isolated perfused rat liver for quantitative biochemical studies of liver metabolism over an experimental period of as long as 4 hours is demonstrated. Respiration rates responded immediately to the addition of substrates and the liver could be restimulated by a second dose of substrate, respiration rates reflecting the nature of the substrate. Net amino nitrogen uptake was consistently exceeded by urea nitrogen production, the latter comparing favorably with in vivo rates. Fructose was rapidly removed from the perfusate by the liver, and the liver efficiently removed lactic acid formed by erythrocyte glycolysis. Ketone body production was continuous and within normal in vivo rates. Bile production declined gradually over a 4-hour period.


1986 ◽  
Vol 236 (1) ◽  
pp. 261-265 ◽  
Author(s):  
D Häussinger ◽  
W Gerok ◽  
H Sies

In a non-recirculating system of isolated liver perfusion, stimulation of urea synthesis by NH4Cl is followed by a decrease of effluent pH by up to 0.2 pH unit. This effect is not observed when urea synthesis is inhibited by amino-oxyacetate or norvaline. When the urea formed by the liver is immediately hydrolysed with urease before the effluent perfusate reaches the pH electrode, the urea-synthesis-induced acidification is no longer observed. This indicates that accompanying alterations in hepatic metabolism after stimulation of urea synthesis, such as increased energy provision and consumption, are not responsible for the extracellular acidification, but that the effect is due to the formation of urea itself. The acidification of the extracellular space after stimulation of urea synthesis by NH4Cl is quantitatively explained by the consumption of 2 mol of HCO3-/mol of urea formed: 1 mol being incorporated into urea, the other being protonated to yield CO2 and H2O. The data match the theoretically predicted HCO3- consumption during ureogenesis and underline the role of hepatic urea synthesis for disposal of HCO3- by converting it into the excretable products CO2 and urea.


1990 ◽  
Vol 270 (1) ◽  
pp. 39-44 ◽  
Author(s):  
S vom Dahl ◽  
M Wettstein ◽  
W Gerok ◽  
D Häussinger

In isolated perfused rat liver, adenosine infusion (50 microM) led to increases in glucose output and portal pressure and a net K+ release of 3.7 +/- 0.21 mumol/g, which was followed by an equivalent net K+ uptake after cessation of the nucleoside infusion. These effects were accompanied by a transient stimulation of hepatic prostaglandin D2 and thromboxane B2 release. The Ca2+ release observed upon adenosine infusion (50 microM) was 23.5 +/- 5.2 nmol/g, i.e. 10-20% of the Ca2+ release observed with extracellular ATP (50 microM). Indomethacin (10 microM) prevented the adenosine-induced stimulation of glucose output and the increase in portal pressure by 79 and 63% respectively, and completely abolished the stimulation of prostaglandin D2 release. The thromboxane A2 receptor antagonist BM 13.177 (20 microM), the phospholipase A2 inhibitor 4-bromophenacyl bromide (20 microM) and the cyclo-oxygenase inhibitor ibuprofen (50 microM) also decreased the glycogenolytic and vasoconstrictive responses of the perfused rat liver upon adenosine infusion by 50-80%. When the indomethacin inhibition of adenosine-induced prostaglandin D2 release was titrated, a close correlation between prostaglandin D2 release and the metabolic and vascular responses to adenosine was observed. These findings suggest an important role for eicosanoids in mediating the nucleoside responses in the perfused rat liver. Since eicosanoids are known to be formed by non-parenchymal cells in rat liver [Decker (1985) Semin. Liver Dis. 5, 175-190], the present study gives further evidence for an important role of eicosanoids as signal molecules between the different liver cell populations.


Sign in / Sign up

Export Citation Format

Share Document