Numerical solution of a singular integral equation arising in a cruciform crack problem

2017 ◽  
Vol 96 (10) ◽  
pp. 1767-1783
Author(s):  
Xian-Ci Zhong ◽  
Han-Mei Wei ◽  
Xiao-Yu Long
2007 ◽  
Vol 04 (03) ◽  
pp. 475-492 ◽  
Author(s):  
Y. Z. CHEN ◽  
X. Y. LIN

In this paper, elastic analysis for a Yoffe moving crack problem in antiplane elasticity of the functionally graded materials (FGMs) is presented. The crack is assumed to move with a constant velocity V. The traction applied on the crack face is arbitrary. The Fourier transform method is used to derive an elementary solution. Furthermore, using the obtained elementary solution a singular integral equation for the problem is obtained. After the singular integral equation is solved, the stress intensity factor (SIF) can be evaluated immediately. In the case of evaluating the SIFs at the leading crack tip and the trailing crack tip, the difference between the two cases is investigated. From the numerical solution of the SIFs, the influence caused by the velocity V and the FGM material property β1 are addressed. It is found that when the FGM material property β1 = 0, i.e. the homogeneous case, the SIFs at the crack tips do not depend on the moving velocity of the crack. Finally, numerical examples are given.


Author(s):  
Sergei M. Sheshko

A scheme is constructed for the numerical solution of a singular integral equation with a logarithmic kernel by the method of orthogonal polynomials. The proposed schemes for an approximate solution of the problem are based on the representation of the solution function in the form of a linear combination of the Chebyshev orthogonal polynomials and spectral relations that allows to obtain simple analytical expressions for the singular component of the equation. The expansion coefficients of the solution in terms of the Chebyshev polynomial basis are calculated by solving a system of linear algebraic equations. The results of numerical experiments show that on a grid of 20 –30 points, the error of the approximate solution reaches the minimum limit due to the error in representing real floating-point numbers.


Sign in / Sign up

Export Citation Format

Share Document