surface scattering
Recently Published Documents


TOTAL DOCUMENTS

1678
(FIVE YEARS 106)

H-INDEX

69
(FIVE YEARS 5)

Author(s):  
M. Sutha ◽  
Dr. R. Nirmala ◽  
Dr. E. Kamalavathi

In VLSI, design and implementation of circuits with MOS devices and binary logic are quite usual. The Main Objective is to design a low power and minimum leakage Quaternary adder. The VLSI field consists of Multi-valued logic (MVL) such as ternary and Quaternary Logic (QTL). The Failures such as Short Channel Effects (SCE) Impact-ionization and surface scattering are in normalized aspects. The Quaternary radix on MVL (multi-valued logic) monitors and reduces the area. The Quaternary (four-valued) logic converts the quaternary signals and binary signals produced by the by the existing binary circuits. The Proposed is carried out with LTSPICE tool and CMOS technology.


2021 ◽  
Vol 13 (24) ◽  
pp. 5060
Author(s):  
Xianyu Guo ◽  
Junjun Yin ◽  
Kun Li ◽  
Jian Yang

In recent years, the compact polarimetric (CP) synthetic aperture radar (SAR) has become a hotspot of SAR Earth observation. Meanwhile, CP SAR provides both relatively rich polarization information and large swath-width for rice mapping. Fine classification of rice paddy plays an important role in growth monitoring, pest prevention and yield estimation of rice. In this study, the multi-temporal CP SAR data were firstly simulated by fully polarimetric RADARSAT-2 data, and 22 CP parameters from each of the six temporal CP SAR data were extracted. Then we built a rice height-sensitive index (RHSI). Furthermore, a decision tree (DT) method was established by using the optimal CP parameters based on RHSI. Finally, the classification results of rice paddy based on DT and support vector machine (SVM) methods were compared. Results showed that the RHSI-DT method could obtain better results, with an overall accuracy of 97.94% and a kappa coefficient of 0.973, which was 2% higher and 0.03 larger than those of the SVM method. Besides, we found that the surface scattering of m-χ decomposition (m-χ_s (0627)) and ΔShannon entropy intensity Hi(Hi (1015)-Hi (0627)) were highly effective parameters to distinguish paddies of transplanting hybrid rice (T-H) and direct-sown japonica rice (D-J).


Author(s):  
Jimena Mejía-López ◽  
Oscar I. López-Sugahara ◽  
José Piña-Flores ◽  
Francisco J. Sánchez-Sesma ◽  
Zengxi Ge ◽  
...  

ABSTRACT The scattering and diffraction of waves by irregular surface profiles is of interest in seismology and in many other areas. Diverse techniques have been proposed to quantitatively study the problem. Among them, domain approaches such as finite differences, spectral elements and finite elements have been used. Because the reduction of dimensionality boundary formulations is widely used. Recently, the direct boundary-element method has been applied using some series approximations for surface scattering, including the preconditioned splitting series, for the numerical description of rough surface scattering. Extending further and simplifying this approach, we use the indirect boundary-element method. The ensuing Fredholm integral equation of the second kind that arises in IBEM leads to a very efficient iterative scheme based on the classical Jacobi method. A discussion of direct and indirect approaches is presented. Assuming incident SH waves, results are obtained with the various approaches and compared among them for both a canyon and a hill, both of semicircular shape. Besides, an example is presented of a surface profile that produces strong scattering. This was inspired by the diverse problems that arise in the emerging field of metamaterials.


2021 ◽  
Vol 119 (19) ◽  
pp. 191601
Author(s):  
Jong Woo Kim ◽  
Mathew J. Cherukara ◽  
Ashish Tripathi ◽  
Zhang Jiang ◽  
Jin Wang

2021 ◽  
Vol 2103 (1) ◽  
pp. 012156
Author(s):  
I A Kuznetsova ◽  
D N Romanov ◽  
A A Yushkanov

Abstract The coefficients of reflection, transmission and absorption are calculated in the framework of the kinetic approach, when an electromagnetic E-wave interacts with a thin conducting film located between two dielectric media. To account for the surface scattering of charge carriers is used a model of mirror-diffuse boundary conditions, assuming that the specularity coefficients of the upper and lower surfaces of the film differ from each other. The electromagnetic wave falls on the upper surface of the film at an arbitrary angle. The case of an anisotropic isoenergetic surface of a conductor having the form of a three-axis ellipsoid, one of the main axes of which is parallel to the magnetic field strength of the wave, and the other is perpendicular to the film surfaces, is considered. The impurity scattering of electrons (holes) is dominated in the volume of the conductor. The dependence of the absorption coefficient on the parameters of the isoenergetic surface of the conductor is analyzed.


2021 ◽  
Author(s):  
Timothy Minton ◽  
Thomas Schwartzentruber ◽  
Chenbiao Xu

The environment encountered by space vehicles in very low Earth orbit (VLEO, 180 – 350 km altitude) contains predominantly atomic oxygen (AO) and molecular nitrogen (N2), which collide with ram surfaces at relative velocities of ~7.5 km s-1. Structural, thermal-control, and coating materials containing organic polymers are particularly susceptible to AO attack at these high velocities, resulting in erosion, roughening, and degradation of function. Copolymerization or blending of a polymer with polyhedral oligomeric silsesquioxane (POSS) yields a material that can resist AO attack through the formation of a passivating silicon-oxide layer. Still, these hybrid organic/inorganic polymers become rough through AO reactions as the passivating layer is forming. Surface roughness may enhance satellite drag because it promotes energy transfer and scattering angle randomization during gas-surface collisions. As potential low-drag and AO-resistant materials, we have investigated POSS-containing films of clear and Kapton-like polyimides that have an atomically smooth AO-resistant coating of Al2O3 that is grown by atomic layer deposition (ALD). Coated and uncoated films were exposed to hyperthermal molecular beams containing atomic and molecular oxygen to investigate their AO resistance, and molecular beam-surface scattering studies were conducted to characterize the gas-surface scattering dynamics on pristine and AO-exposed surfaces to inform drag predictions. The AO erosion yield of Al2O3 ALD-coated films is essentially zero. Simulations of drag on a representative satellite structure that are based on the observed scattering dynamics suggest that the use of the Al2O3 ALD-coated POSS-polyimides on external satellite surfaces have the potential to reduce drag to less than half that predicted for diffuse scattering surfaces. These smooth and AO-resistant polymer films thus show promise for use in the extreme oxidizing and high-drag environment in VLEO.


2021 ◽  
Vol 11 (20) ◽  
pp. 9457
Author(s):  
Zhen Yang ◽  
Yanbo Yang ◽  
Yong Zhang ◽  
Xinmin Guo ◽  
Kaichang Lu ◽  
...  

The current measurement system of surface scattering rate applied in laser protective materials has the defects of low accuracy, discontinuous diagnosis region and narrow infrared measuring waveband. In order to make up for these shortcomings, a high-precision material-surface-scattering-rate measurement system based on a three-hole integrating sphere is proposed, which can realize the high-precision quantitative measurement on any region of coating surface from near-infrared to far-infrared band. Firstly, a new quantitative relationship between the luminous flux received by detector and the surface scattering rate of coating is obtained by modifying the existing integrating sphere scattering model. Secondly, a high-precision scattering characteristic measurement system based on a three-hole integrating sphere is designed and achieved. The influence of the main design parameters of the integrating sphere on the expected measuring accuracy of the system is investigated by using a TracePro simulation. Accordingly, the optimal design parameters of the system are given. Then, the main sources of the relative measurement uncertainty for the scattering rate are investigated experimentally, and four main relative uncertainty factors are evaluated quantitatively. Finally, according to the error propagation theory, the total experimental relative measurement uncertainty of the system is obtained, which is ± 2.22% and 26–56% higher than the current measuring accuracy. The new coating-scattering-rate measurement system proposed in this paper can provide an effective experimental detection means for high-precision quantitative measurement and a performance evaluation for laser-protective-coating surface-scattering rate.


Sign in / Sign up

Export Citation Format

Share Document