THE NUMERICAL SOLUTION OF THE SINGULAR INTEGRAL EQUATION FOR DIFFRACTION BY A SOFT STRIP

1966 ◽  
Vol 19 (1) ◽  
pp. 93-105 ◽  
Author(s):  
N. CAMERON
Author(s):  
Sergei M. Sheshko

A scheme is constructed for the numerical solution of a singular integral equation with a logarithmic kernel by the method of orthogonal polynomials. The proposed schemes for an approximate solution of the problem are based on the representation of the solution function in the form of a linear combination of the Chebyshev orthogonal polynomials and spectral relations that allows to obtain simple analytical expressions for the singular component of the equation. The expansion coefficients of the solution in terms of the Chebyshev polynomial basis are calculated by solving a system of linear algebraic equations. The results of numerical experiments show that on a grid of 20 –30 points, the error of the approximate solution reaches the minimum limit due to the error in representing real floating-point numbers.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 872 ◽  
Author(s):  
◽  
Shuhuang Xiang ◽  
Guidong Liu

This paper aims to present a Clenshaw–Curtis–Filon quadrature to approximate thesolution of various cases of Cauchy-type singular integral equations (CSIEs) of the second kind witha highly oscillatory kernel function. We adduce that the zero case oscillation (k = 0) proposed methodgives more accurate results than the scheme introduced in Dezhbord at el. (2016) and Eshkuvatovat el. (2009) for small values of N. Finally, this paper illustrates some error analyses and numericalresults for CSIEs.


Sign in / Sign up

Export Citation Format

Share Document