Positive radial solutions of a mean curvature equation in Lorentz–Minkowski space with strong singularity

2018 ◽  
Vol 99 (9) ◽  
pp. 1631-1637
Author(s):  
Minghe Pei ◽  
Libo Wang
Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Rafael López

We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.


2017 ◽  
Vol 24 (1) ◽  
pp. 113-134 ◽  
Author(s):  
Chiara Corsato ◽  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractWe discuss existence, multiplicity, localisation and stability properties of solutions of the Dirichlet problem associated with the gradient dependent prescribed mean curvature equation in the Lorentz–Minkowski space$\left\{\begin{aligned} \displaystyle{-}\operatorname{div}\biggl{(}\frac{\nabla u% }{\sqrt{1-|\nabla u|^{2}}}\biggr{)}&\displaystyle=f(x,u,\nabla u)&&% \displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega.\end{aligned}\right.$The obtained results display various peculiarities, which are due to the special features of the involved differential operator and have no counterpart for elliptic problems driven by other quasilinear differential operators. This research is also motivated by some recent achievements in the study of prescribed mean curvature graphs in certain Friedmann–Lemaître–Robertson–Walker, as well as Schwarzschild–Reissner–Nordström, spacetimes.


2019 ◽  
Vol 21 (03) ◽  
pp. 1850003 ◽  
Author(s):  
Xuemei Zhang ◽  
Meiqiang Feng

In this paper, bifurcation diagrams and exact multiplicity of positive solution are obtained for the one-dimensional prescribed mean curvature equation in Minkowski space in the form of [Formula: see text] where [Formula: see text] is a bifurcation parameter, [Formula: see text], the radius of the one-dimensional ball [Formula: see text], is an evolution parameter. Moreover, we make a comparison between the bifurcation diagram of one-dimensional prescribed mean curvature equation in Euclid space and Minkowski space. Our methods are based on a detailed analysis of time maps.


2020 ◽  
Vol 18 (1) ◽  
pp. 1185-1205
Author(s):  
Franco Obersnel ◽  
Pierpaolo Omari

Abstract This paper focuses on the existence and the multiplicity of classical radially symmetric solutions of the mean curvature problem: \left\{\begin{array}{ll}-\text{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v{|}^{2}}}\right)=f(x,v,\nabla v)& \text{in}\hspace{.5em}\text{Ω},\\ {a}_{0}v+{a}_{1}\tfrac{\partial v}{\partial \nu }=0& \text{on}\hspace{.5em}\partial \text{Ω},\end{array}\right. with \text{Ω} an open ball in {{\mathbb{R}}}^{N} , in the presence of one or more couples of sub- and super-solutions, satisfying or not satisfying the standard ordering condition. The novel assumptions introduced on the function f allow us to complement or improve several results in the literature.


Sign in / Sign up

Export Citation Format

Share Document