Statistics of Reaction Progress Variable and Mixture Fraction Gradients from DNS of Turbulent Partially Premixed Flames

2013 ◽  
Vol 185 (9) ◽  
pp. 1329-1359 ◽  
Author(s):  
Sean P. Malkeson ◽  
S. Ruan ◽  
Nilanjan Chakraborty ◽  
N. Swaminathan
2018 ◽  
Vol 22 (5) ◽  
pp. 862-882 ◽  
Author(s):  
Zhi X. Chen ◽  
N. Anh Khoa Doan ◽  
Shaohong Ruan ◽  
Ivan Langella ◽  
N. Swaminathan

1999 ◽  
Vol 121 (1) ◽  
pp. 66-72 ◽  
Author(s):  
B. J. Krass ◽  
B. W. Zellmer ◽  
I. K. Puri ◽  
S. Singh

Partial premixing can be induced by design in combustors, occurs inadvertently during turbulent nonpremixed combustion, or arises through inadequate fuel-air mixing. Therefore, it is of interest to investigate the effect of partial premixing in a burner that mimics conditions that might occur under practice. In this investigation, we report on similitude of partially premixed flames encountered in practical complex and multi-dimensional burners with simpler, less complex flames, such as counterflow flamelets. A burner is designed to simulate the more complex multi-dimensional flows that might be encountered in practice, and includes the effects of staging, swirl, and possible quenching by introduction of secondary air. The measurements indicate that the structure of partially premixed flames in complex, practical devices can be analyzed in a manner similar to that of flamelets, even if substantial heat transfer occurs. In particular, the flame structure can be characterized in terms of a modified mixture fraction that differentiates the lean and rich zones, and identifies the spatial location of the flame.


2009 ◽  
Vol 1 (3) ◽  
pp. 339-363 ◽  
Author(s):  
Suresh K. Aggarwal

In this study, we examine the structure and existence of state relationships in unsteady partially premixed flames (PPFs) subjected to buoyancy-induced and external perturbations. A detailed numerical model is employed to simulate the steady and unsteady two-dimensional PPFs established using a slot burner under normal and zero-gravity conditions. The coflow velocity is parametrically varied. The methane-air chemistry is modeled using a fairly detailed mechanism that contains 81 elementary reactions and 24 species. Validation of the computational model is provided through comparisons of predictions with nonintrusive measurements. The combustion proceeds in two reaction zones, one a rich premixed zone and the other a nonpremixed zone. These reaction zones are spatially separated, but involve strong interactions between them due to thermochemistry and scalar transport. The fuel is mostly consumed in the premixed zone to produce CO and H2, which are transported to and consumed in the nonpremixed zone. The nonpremixed zone in turn provides heat and H-atoms to the premixed zone. For the range of conditions investigated, the zero-g partially premixed flames exhibit a stable behavior and a remarkably strong resistance to perturbations. In contrast, the corresponding normal-gravity flames exhibit oscillatory behavior at low coflow velocities but a stable behavior at high coflow velocities, and the behavior can be explained in terms of a global and convective instabilities. The effects of coflow and gravity on the flames are characterized through a parameter VR, defined as the ratio of coflow velocity to jet velocity. For VR ≤ 1 (low coflow velocity regime), the structures of both 0- and 1-g flames are strongly sensitive to changes in VR, while they are only mildly affected by coflow in the high coflow velocity regime (VR > 1). In addition, the spatio-temporal characteristics of the 0- and 1-g flames are markedly different in the first regime, but are essentially similar in the second regime. A more significant difference in the first regime between these flames is the presence of a flow instability that manifests itself through the self-excited oscillations of the 1-g flame and the concomitant flickering of the nonpremixed reaction zone. For VR ≤ 1, as the coflow velocity is increased, the oscillation amplitude decreases and the oscillation frequency increases, both of which are in accord with previous experimental and computational results concerning 1-g jet diffusion flames. The modified conserved scalar approach is found to be effective in characterizing the flame structure and developing state relationships for both steady and unsteady partially premixed flames. This is demonstrated by the fact that the temperature as well as the major and minor species profiles follow similar state relationships in terms of the modified mixture fraction for the 0- and 1-g flames, even though these flames have markedly different spatio-temporal characteristics.


Author(s):  
Nilanjan Chakraborty ◽  
Alexander Herbert ◽  
Umair Ahmed ◽  
Hong G. Im ◽  
Markus Klein

AbstractA three-dimensional Direct Numerical Simulation (DNS) database of statistically planar $$H_{2} -$$ H 2 - air turbulent premixed flames with an equivalence ratio of 0.7 spanning a large range of Karlovitz number has been utilised to assess the performances of the extrapolation relations, which approximate the stretch rate and curvature dependences of density-weighted displacement speed $$S_{d}^{*}$$ S d ∗ . It has been found that the correlation between $$S_{d}^{*}$$ S d ∗ and curvature remains negative and a significantly non-linear interrelation between $$S_{d}^{*}$$ S d ∗ and stretch rate has been observed for all cases considered here. Thus, an extrapolation relation, which assumes a linear stretch rate dependence of density-weighted displacement speed has been found to be inadequate. However, an alternative extrapolation relation, which assumes a linear curvature dependence of $$S_{d}^{*}$$ S d ∗ but allows for a non-linear stretch rate dependence of $$S_{d}^{*}$$ S d ∗ , has been found to be more successful in capturing local behaviour of the density-weighted displacement speed. The extrapolation relations, which express $$S_{d}^{*}$$ S d ∗ as non-linear functions of either curvature or stretch rate, have been found to capture qualitatively the non-linear curvature and stretch rate dependences of $$S_{d}^{*}$$ S d ∗ more satisfactorily than the linear extrapolation relations. However, the improvement comes at the cost of additional tuning parameter. The Markstein lengths LM for all the extrapolation relations show dependence on the choice of reaction progress variable definition and for some extrapolation relations LM also varies with the value of reaction progress variable. The predictions of an extrapolation relation which involve solving a non-linear equation in terms of stretch rate have been found to be sensitive to the initial guess value, whereas a high order polynomial-based extrapolation relation may lead to overshoots and undershoots. Thus, a recently proposed extrapolation relation based on the analysis of simple chemistry DNS data, which explicitly accounts for the non-linear curvature dependence of the combined reaction and normal diffusion components of $$S_{d}^{*}$$ S d ∗ , has been shown to exhibit promising predictions of $$S_{d}^{*}$$ S d ∗ for all cases considered here.


AIAA Journal ◽  
2002 ◽  
Vol 40 (11) ◽  
pp. 2289-2297 ◽  
Author(s):  
Hongshe Xue ◽  
Suresh K. Aggarwal

Sign in / Sign up

Export Citation Format

Share Document