International Journal of Spray and Combustion Dynamics
Latest Publications


TOTAL DOCUMENTS

231
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 1)

Published By Sage Publications

1756-8285, 1756-8277

2021 ◽  
Vol 13 (2-3) ◽  
pp. 146-163
Author(s):  
Alejandro Aljure Osorio ◽  
Xavier Tauzia ◽  
Alain Maiboom

Diesel engines are becoming smaller as technology advances, which means that the fuel spray (or jet) interacts with the cylinder walls before combustion starts. Most fuel injection 1D models (especially for diesel fuel) do not consider this interaction. Therefore, a wall-jet sub-model was created on an Eulerian 1D diesel spray model. It was calibrated using data from the literature and validated with experimental data from a fuel spray impacting a plate in a constant volume combustion chamber. Results show that the spray moving along the wall has a higher mixing rate but less penetration as an equivalent free jet, therefore they show a similar volume. Spray-wall interaction creates a stagnation zone right before the impact with the wall, and friction of the jet with the wall is relatively low. All these phenomena are well captured by the wall-jet sub-model.


2021 ◽  
Vol 13 (2-3) ◽  
pp. 113-123
Author(s):  
Wen Hua ◽  
Zhang Xin-yu ◽  
Jiang Yu-long ◽  
Zhao Ling-yao

The fuel flow pattern in the fuel injection nozzle of diesel engine is a complex and changeable phenomenon, which is easily affected by various factors, bringing the differences of flow patterns between multiple injection cycles. To solve the above problem, a visual experimental platform of fuel injection nozzle was built, in which the 100 injection cycles of diesel engine on the same working condition were photographed via shadowgraphy to study the difference in fuel flow pattern in the nozzle by ensemble average processing method. The cyclic variation rate K of fuel flow pattern is defined. Results demonstrate that the fuel flow pattern tends to be the same in multiple fuel injection cycles, but there is a strong randomness at the starting of injection and after ending of injection; the K can be reduced by decreasing the injection pressure and the inclination angle of orifice, so that the fuel flow pattern in the nozzle tends to be consistent.


2021 ◽  
Vol 13 (2-3) ◽  
pp. 124-145
Author(s):  
Saad A. El-Sayed

This paper investigated the critical ignition conditions of combustible gas containing liquid fuel droplets. The analysis is done based on the criteria of the thermal explosion theory. It includes analytical and numerical solutions of modeling equations of fuel droplets heating and evaporation by convection and radiation from the surrounding reactive hot gas. The exothermic reaction is usually modeled as a single-step reaction obeying an Arrhenius temperature dependence. The thermal conductivity of the fuel droplet is dependent on temperature. The analytical solution produced relations between the main critical characteristic parameters in all planes of the solution. The results obtained from investigating the effect of the characteristic parameters on the explosion behavior of gas and fuel droplets and the thermal radiation proved that both of them are significant. The study proved that the criticality definitions of the thermal explosion of a single-phase system can be used effectively and efficiently to determine the critical conditions of a multi-phase system. Finally, the application of the numerical solutions of the modeling equations was used to analyze the explosion characteristics of a diesel fuel spray system.


Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


Author(s):  
Lorenzo Palanti ◽  
Antonio Andreini ◽  
Bruno Facchini

The optimization of the igniter position is a critical issue in modern aviation gas turbines since it can help to minimize the amount of energy required for ignition and to guarantee a fast relight in case of flameout. From a numerical perspective, several spark discharges should be simulated for each spark position, to account for different realizations due to time-dependent turbulent motions. Unfortunately, standard simulations are impractical to use for this purpose, due to the need of carrying out several unsteady simulations, leading to a huge associated computational effort. This is why low-order models have been developed, providing an affordable estimation of the local ignition probability, by sacrificing the accuracy and the physical consistency of the prediction. In the present work, a previously developed low-order design model has been implemented in ANSYS Fluent 2019R1® and used to investigate the ignition performance of a single-sector, confined spray flame, where data from laser ignition experiments are available. A non-reactive Large Eddy Simulation, which is validated against experimental data, provides the base flow needed to feed the model. If the tuning parameters of the ignition model are well calibrated, it provides quite good results. In the test case here investigated, it is shown that ignition is possible in the outer recirculation zone and very unlikely elsewhere. Later, a discussion about the effect of the most relevant tuning parameters is carried out. It is shown that the model mostly succeed to identify the area of possible ignition, even if the lack of calibration could lead to a poorer agreement with the experimental data.


Author(s):  
Pedro M de Oliveira ◽  
Michael P Sitte ◽  
Marco Zedda ◽  
Andrea Giusti ◽  
Epaminondas Mastorakos

A physics-based, low-order ignition model is used to assess the ignition performance of a kerosene-fueled gas-turbine combustor under high-altitude relight conditions. The ignition model used in this study is based on the motion of virtual flame particles and their extinction according to a Karlovitz number criterion, and a stochastic procedure is used to account for the effects of spray polydispersity on the flame’s extinction behavior. The effects of large droplets arising from poor fuel atomization at sub-idle conditions are then investigated in the context of the model parameters and the combustor’s ignition behavior. For that, a Reynolds-averaged Navier-Stokes simulation of the cold flow in the combustor was performed and used as an input for the ignition model. Ignition was possible with a Sauter mean diameter (SMD) of 50 μm, and was enhanced by increasing the spark volume. Although doubling the spark volume at larger SMDs (75 and 100 μm) resulted in the suppression of short-mode failure events, ignition was not achieved due to a reduction of the effective flammable volume in the combustor. Overall, a lower ignition probability is obtained when using the stochastic procedure for the spray, which is to be expected due to the additional detrimental effects associated with poor spray atomisation and high polydispersity.


Author(s):  
Manish Kumar ◽  
Srinibas Karmakar ◽  
Sonu Kumar ◽  
Saptarshi Basu

Potential alternative fuels that can mitigate environmental pollution from gas turbine engines (due to steep growth in the aviation sector globally) are getting significant attention. Spray behavior plays a significant role in influencing the combustion performance of such alternative fuels. In the present study, spray characteristics of Kerosene-based fuel (Jet A-1) and alternative aviation fuels such as butyl butyrate, butanol, and their blends with Jet A-1 are investigated using an air-blast atomizer under different atomizing air-to-fuel ratios. Phase Doppler Interferometry has been employed to obtain the droplet size and velocity distribution of various fuels. A high-speed shadowgraphy technique has also been adopted to make a comparison of ligament breakup characteristics and droplet formation of these alternative biofuels with that of Jet A-1. An effort is made to understand how the variation in fuel properties (mainly viscosity) influences atomization. Due to the higher viscosity of butanol, the SMD is higher, and the droplet formation seems to be delayed compared to Jet A-1. In contrast, the lower viscosity of butyl butyrate promotes faster droplet formation. The effects of the blending of these biofuels with Jet A-1 on atomization characteristics are also compared with that of Jet A-1.


Author(s):  
G Kats ◽  
JB Greenberg

A mathematical analysis of the ignition of a polydisperse spray/air mixture by an infinite surface heated in a pulsed manner is presented. In contrast to previous work in the literature, the entire history of the ignition process is accounted for starting from the flame-embryo progenitor stage, through the thermal runaway stage to the final flame propagation stage. For tractability at the current stage, the chemical kinetics is taken to be that of a single global reaction. The spray is modeled using the sectional approach and the influence of fuel spray characteristics on ignition is determined. Good agreement was found between the theoretical predictions and full numerical simulations. Delay in ignition due to the build-up of vapor from the fuel droplets as well as heat loss to the droplets for evaporation are found to play a significant role under certain operating conditions. Comparison between the critical energy flux and the initial spray polydispersity revealed small differences for larger values of the pulse duration but more significant minor differences for smaller pulse durations. Despite these seemingly minor differences, it was shown that the initial spray polydispersity can have a critical influence on whether flame ignition will occur or fail, even for sprays having the same initial SMD.


Author(s):  
Cody Dowd ◽  
Joseph Meadows

Gas turbine operation increasingly relies on lean premixed (LPM) combustion to reduce harmful emissions, which is susceptible to thermoacoustic instabilities. Most combustion systems are technically premixed and exhibit a degree of equivalence ratio inhomogeneity. Thermoacoustic pressure oscillations can couple with the heat release oscillations through the generation of equivalence ratio fluctuations at fuel injection sites, which are then convected to the flame front. Previous experimental studies have shown that porous inert media (PIM) can passively mitigate these instabilities by adding acoustic damping and by reducing the thermoacoustic feedback mechanism. To understand the role of PIM on these equivalence ratio oscillations, spatially resolved, phased averaged equivalence ratio fluctuations are measured using the ratio of OH*/CH* chemiluminescence. Spatial imaging of OH* or CH* radicals produce integrated line of sight intensity values and an Abel transformation is used to obtain spatially resolved values. Phase averaged images are synced with dynamic pressure measurements, and an axisymmetric atmospheric burner is used to study the effects of ring-shaped PIM on the spatially resolved equivalence ratio field with self-excited thermoacoustic instabilities. The results show that PIM significantly reduces these fluctuations, and the effects on the stability of the system are discussed.


Sign in / Sign up

Export Citation Format

Share Document