Constructive time-suboptimal control laws in non-stationary non-oscillatory systems

1984 ◽  
Vol 39 (5) ◽  
pp. 939-953 ◽  
Author(s):  
A. I. MOROZ
Robotica ◽  
2003 ◽  
Vol 21 (2) ◽  
pp. 153-161 ◽  
Author(s):  
S. Kilicaslan ◽  
Y. Ercan

A method for the time suboptimal control of an industrial manipulator that moves along a specified path while keeping its end-effector orientation unchanged is proposed. Nonlinear system equations that describe the manipulator motion are linearized at each time step along the path. A method which gives control inputs (joint angular velocities) for time suboptimal control of the manipulator is developed. In the formulation, joint angular velocity and acceleration limitations are also taken into consideration. A six degree of freedom elbow type manipulator is used in a case study to verify the method developed.


1984 ◽  
Vol 104 (1) ◽  
pp. 189-211 ◽  
Author(s):  
T Natarajan ◽  
D.A Pierre ◽  
G Naadimuthu ◽  
E.S Lee

2019 ◽  
Vol 866 ◽  
pp. 810-840 ◽  
Author(s):  
Aika Kawagoe ◽  
Satoshi Nakashima ◽  
Mitul Luhar ◽  
Koji Fukagata

This paper evaluates and modifies the so-called suboptimal control technique for turbulent skin friction reduction through a combination of low-order modelling and direct numerical simulation (DNS). In a previous study, Nakashima et al. (J. Fluid Mech., vol. 828, 2017, pp. 496–526) employed resolvent analysis to show that the efficacy of suboptimal control was mixed across spectral space when the streamwise wall shear stress (case ST) was used as a sensor signal, i.e. specific regions of spectral space showed drag increment. This observation suggests that drag reduction may be attained if control is applied selectively in spectral space. DNS results presented in the present study, however, do not show a significant effect on the flow with selective control. A posteriori analyses attribute this lack of efficacy to a much lower actuation amplitude in the simulations compared to model assumptions. Building on these observations, resolvent analysis is used to design and provide a preliminary assessment of modified control laws that also rely on sensing the streamwise wall shear stress. Control performance is then assessed by means of DNS. The proposed control laws generate as much as $10\,\%$ drag reduction, and these results are broadly consistent with resolvent-based predictions. The physical mechanisms leading to drag reduction are assessed via conditional sampling. It is shown that the new control laws effectively suppress the near-wall quasi-streamwise vortices. A physically intuitive explanation is proposed based on a separate evaluation of clockwise and anticlockwise vortices.


1998 ◽  
Vol 358 ◽  
pp. 245-258 ◽  
Author(s):  
CHANGHOON LEE ◽  
JOHN KIM ◽  
HAECHEON CHOI

Two simple feedback control laws for drag reduction are derived by applying a suboptimal control theory to a turbulent channel flow. These new feedback control laws require pressure or shear-stress information only at the wall, and when applied to a turbulent channel flow at Reτ=110, they result in 16–22% reduction in the skin-friction drag. More practical control laws requiring only the local distribution of the wall pressure or one component of the wall shear stress are also derived and are shown to work equally well.


1972 ◽  
Vol 5 (1) ◽  
pp. 361-366
Author(s):  
T. Natarajan ◽  
D.A. Pierre

1987 ◽  
Vol 128 (1) ◽  
pp. 156-175
Author(s):  
T. Natarajan ◽  
G. Naadimuthu ◽  
D.A. Pierre ◽  
E.S. Lee

Sign in / Sign up

Export Citation Format

Share Document