Structure and organization of the spermatozoa within the spermatheca of honey bee queens Apis mellifera intermissa L.

2015 ◽  
Vol 54 (5) ◽  
pp. 577-581 ◽  
Author(s):  
Ourdia Sadeddine Zennouche ◽  
Mokrane Iguer-Ouada ◽  
Nacereddine Benmeradi ◽  
Arezki Mohammedi
Apidologie ◽  
2011 ◽  
Vol 42 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Deborah A. Delaney ◽  
Jennifer J. Keller ◽  
Joel R. Caren ◽  
David R. Tarpy

2017 ◽  
Vol 61 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Celia A. Contreras-Martinez ◽  
Francisca Contreras-Escareño ◽  
José O. Macias-Macias ◽  
Jose M. Tapia-Gonzalez ◽  
Tatiana Petukhova ◽  
...  

Abstract The need for the increased production of honey bee (Apis mellifera) queens has led beekeepers to use different substrates in artificial queen cups where larvae destined to become queens are deposited (grafting). However, not enough scientific evidence exists that indicates that this practice is useful and what substance offers the best results. This study was conducted to determine with the Doolittle queen rearing method the acceptance rate of larvae deposited on different substrates during grafting and to determine if the sugar content and pH of the substrates used affect the acceptance of larvae in cell builder colonies. The evaluated substrates were coconut water, apple nectar, royal jelly, cola soda and distilled water, plus control (without substrate). Grafted larvae of the six treatments were introduced into cell builder colonies and their acceptance verified after 72 h. Apple nectar provided the highest rate of larvae acceptance with 81.06%, followed by cola soda with 62.93%, coconut water with 60.90%, royal jelly with 57.82% and distilled water with 58.99%. The larvae acceptance rates of all substrates were significantly higher than the control, which had an acceptance rate of 47.04%. No significant relationship was found between the sugar content of the substrates and larvae acceptance. However, although not significant, a high negative correlation was found between the substrate pH and the number of accepted larvae (Rho = - 0.90, p = 0.07). These results suggest that the use of liquid acidic substrates during larvae grafting, in particular apple nectar, may increase the production of honey bee queens.


2020 ◽  
Vol 33 (4) ◽  
pp. 534-543 ◽  
Author(s):  
Esmaeil Amiri ◽  
Kevin Le ◽  
Carlos Vega Melendez ◽  
Micheline K. Strand ◽  
David R. Tarpy ◽  
...  

1993 ◽  
Vol 19 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Roy-Keith Smith ◽  
Marla Spivak ◽  
Orley R. Taylor ◽  
Clayton Bennett ◽  
Michelle L. Smith

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yasin Kahya

AbstractEurope, Africa and the Middle East have several original subspecies of the western honey bee (Apis mellifera L.), each with distinctive characteristics. These subspecies are the product of natural selection in their native range. Nevertheless, anthropogenic impacts such as migratory beekeeping and use of non-native queens result in an admixture of these subspecies and their ecotypes. I aimed to develop a SNP-based method to detect whether queen honey bees were mated with drones from foreign subspecies. For this purpose, Caucasian and Italian queens and drones were reared. Each queen was instrumentally inseminated with mixed semen collected from Caucasian (4 μl) and Italian drones (4 μl). The spermathecae of queens were dissected out after the onset of oviposition. The DNA was extracted from each spermatheca and from the thoraces of Caucasian and Italian drones. Seven regions on mtDNA that were isolated from drones were sequenced to determine the SNPs, enabling the discrimination of Caucasian sperm from Italian in spermathecal contents. Based on one SNP (11606. bp, T/C) residing on the Cytb gene, a specific primer was designed to be used in High Resolution Melting (HRM) analysis. HRM analysis indicated that heteroduplex peak profiles were present in all spermathecal contents of instrumentally inseminated queens. The results provide proof of the concept that the presence of likely non-native mitochondrial lineages can be detected by HRM analysis based on the SNP genotyping of spermathecal contents.


Sign in / Sign up

Export Citation Format

Share Document