An unstructured finite-volume semi-coupled projection model for bed load sediment transport in shallow-water flows

Author(s):  
Miguel Uh Zapata ◽  
Lucia Gamboa Salazar ◽  
Reymundo Itzá Balam ◽  
Kim Dan Nguyen
Author(s):  
Kirill V. Karelsky ◽  
Arakel S. Petrosyan ◽  
Alexander G. Slavin

AbstractA finite-volume numerical method for studying shallow water flows over an arbitrary bed profile in the presence of external force has been proposed in [33]. This method uses the quasi-two-layer model of hydrodynamic flows over a stepwise boundary with advanced consideration of the flow features near the step. A distinctive feature of the suggested model is a separation of the studied flow into two layers in calculating the flow quantities near each step, and improving by this means the approximation of depth-averaged solutions of the initial three-dimensional Euler equations. We are solving the shallow-water equations for one layer, introducing the fictitious lower layer only as an auxiliary structure in setting up the appropriate Riemann problems for the upper layer. Besides, the quasi-two-layer approach leads to the appearance of additional terms in the one-layer finite-difference representation of balance equations. Numerical simulations are performed based on the proposed in [33] algorithm of various physical phenomena, such as breakdown of the rectangular fluid column over an inclined plane, large-scale motion of fluid in the gravity field in the presence of Coriolis force over amounted obstacle on the underlying surface. Computations are made for the two-dimensional dam-break problem on a slope precisely conform to laboratory experiments. The interaction of the Tsunami wave with the shore line including an obstacle has been simulated to demonstrate the efficiency of the developed algorithm in domains, including partly flooded and dry regions.


Sign in / Sign up

Export Citation Format

Share Document