wetting and drying
Recently Published Documents


TOTAL DOCUMENTS

891
(FIVE YEARS 277)

H-INDEX

56
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jie Chen ◽  
Jiabo Yin

Abstract. The “dry gets drier and wet gets wetter” (DDWW) paradigm has been widely used to summarize the expected trends of the global hydrologic cycle under climate change. However, the paradigm is challenged over land due to different measures and datasets, and is still unexplored from the perspective of terrestrial water storage anomaly (TWSA). Considering the essential role of TWSA in wetting and drying of the land surface, here we built upon a large ensemble of TWSA datasets including satellite-based products, global hydrological models, land surface models, and global climate models to evaluate the DDWW hypothesis during the historical (1985–2014) and future (2071–2100) periods under various scenarios. We find that 27.1 % of global land confirms the DDWW paradigm, while 22.4 % of the area shows the opposite pattern during the historical period. In the future, the DDWW paradigm is still challenged with the percentage supporting the pattern lower than 20 %, and both the DDWW-validated and DDWW-opposed proportion increase along with the intensification of emission scenarios. Our findings will provide insights and implications for global wetting and drying trends from the perspective of TWSA under climate change.


2022 ◽  
pp. 266-287
Author(s):  
Maria de Fátima Lorena Oliveira ◽  
Sergio Oliveira ◽  
António Terrão Russo ◽  
kiril bahcevandziev ◽  
Ana Bela M. Lopes ◽  
...  

This chapter aims to analyze the rice production system at the Baixo Mondego Valley to understand the main concerns. Field research and field trials were carried out to analyze rice production, marketing systems, and different irrigation alternatives. An analysis on the worries was made, and a correlational attempt was done. The results show a production system oriented by agri-environmental policies. The problems related with rice irrigation are water scarcity, environmental impacts on water quality, agroecosystems, and methane emissions. To reduce water demand, the alternate wetting and drying flooding method, and the improvement of the precise land levelling were studied on the scope of MEDWATERICE Project. About 12-14% of water saving was observed, with impact on production lower than 3.5%, allowing period of 11-19 days of dry soil, expecting positive implications for greenhouse gas emissions. Innovation in the irrigation system may help to reduce some of the farmers' concerns and help to better adapt this crop to the new needs of agriculture in terms of environmental competitiveness.


2021 ◽  
Vol 12 (3) ◽  
pp. 101-136
Author(s):  
Renata Távora ◽  
José Augusto Drummond ◽  
Alain Santandreu ◽  
Anita Luján ◽  
Ernesto Ráez-Luna ◽  
...  

The increased use of water in irrigated rice monocultures in the Jequetepeque Valley, on the northern coast of Peru, has exacerbated environmental, socioeconomic and health problems. The Alternate Wetting and Drying (AWD) irrigation technique aims to increase water management efficiency in rice cultivation. The objective of the present article is to understand farmers’ perceptions about the benefits and risks of implementing AWD. Data from interviews with 319 farmers showed that they recognise nine interactions between AWD's economic, environmental and health aspects but prioritise economic factors when assessing its benefits. We also identified the main channels and spaces of communication and debate on issues related to agriculture and health that are likely to be effective in promoting the diffusion of AWD. The study demonstrated the relevance of integrated actions to encourage the adoption of agricultural innovations which consider the interactions between environmental sustainability, health issues, and producers' economic priorities.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Kristine Samoy-Pascual ◽  
Sudhir Yadav ◽  
Gio Evangelista ◽  
Mary Ann Burac ◽  
Marvelin Rafael ◽  
...  

Alternate Wetting and Drying (AWD) is a well-known low-cost water-saving and climate change adaptation and mitigation technique for irrigated rice. However, its adoption rate has been low despite the decade of dissemination in Asia, especially in the Philippines. Using cross-sectional farm-level survey data, this study empirically explored factors shaping AWD adoption in a gravity surface irrigation system. We used regression-based approaches to examine the factors influencing farmers’ adoption of AWD and its impact on yield. Results showed that the majority of the AWD adopters were farmers who practiced enforced rotational irrigation (RI) scheduling within their irrigators’ association (IA). With the current irrigation management system, the probability of AWD implementation increases when farmers do not interfere with the irrigation schedule (otherwise they opt to go with flooding). Interestingly, the awareness factor did not play a significant role in the farmers’ adoption due to the RI setup. However, the perception of water management as an effective weed control method was positively significant, suggesting that farmers are likely to adopt AWD if weeds are not a major issue in their field. Furthermore, the impact on grain yields did not differ with AWD. Thus, given the RI scheduling already in place within the IA, we recommend fine-tuning this setup following the recommended safe AWD at the IA scale.


2021 ◽  
Vol 13 (24) ◽  
pp. 13999
Author(s):  
Ahmed R. Suleiman ◽  
Lei V. Zhang ◽  
Moncef L. Nehdi

During their service life, concrete structures are subjected to combined fluctuations of temperature and relative humidity, which can influence their durability and service life performance. Self-healing has in recent years attracted great interest to mitigate the effects of such environmental exposure on concrete structures. Several studies have explored the autogenous crack self-healing in concrete incorporating superabsorbent polymers (SAPs) and exposed to different environments. However, none of the published studies to date has investigated the self-healing in concrete incorporating SAPs under a combined change in temperature and relative humidity. In the present study, the crack width changes due to self-healing of cement mortars incorporating SAPs under a combined change of temperature and relative humidity were investigated and quantified using micro-computed tomography and three-dimensional image analysis. A varying dosage of SAPs expressed as a percentage (0.5%, 1%, and 2%) of the cement mass was incorporated in the mortar mixtures. In addition, the influence of other environments such as continuous water submersion and cyclic wetting and drying was studied and quantified. The results of segmentation and quantification analysis of X-ray µCT scans showed that mortar specimens incorporating 1% SAPs and exposed to environments with a combined change in temperature and relative humidity exhibited less self-healing (around 6.58% of healing efficiency). Conversely, when specimens were subjected to cyclic wetting and drying or water submersion, the healing efficiency increased to 19.11% and 26.32%, respectively. It appears that to achieve sustained self-healing of cracks, novel engineered systems that can assure an internal supply of moisture are needed.


Nukleonika ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Izabela M. Fijał-Kirejczyk ◽  
Massimo Rogante ◽  
Jacek J. Milczarek ◽  
Joanna Żołądek-Nowak ◽  
Zdzisław Jurkowski ◽  
...  

Abstract The spontaneous wetting and drying of flat porous samples of linen, cotton and synthetic textiles were studied using dynamic neutron radiography (DNR). The progress of the wetting process of the media was delineated from the obtained neutron dynamical radiography images. The results of the investigation reveal a non-classical behaviour of kinetics of wicking of these materials. The character of the wetting kinetics is discussed in terms of the fractal character of the tortuosity of fabric capillaries.


Author(s):  
Xiaole Huang ◽  
Wennian Xu ◽  
Yu Ding ◽  
Dong Xia ◽  
Shiyuan Xiong ◽  
...  

Vegetation-growing Concrete (VC), as a new type of cemented soil, is usually used for plants growing on the surface of high and steep rocky slopes. With the widespread application of VC substrate, a pressing problem arises to ensure its durability under wetting and drying conditions. To explore the greatest possible impact on the mechanical properties and microstructure features of VC substrate, an experimental program including triaxial test, SEM analysis, and ultrasonic testing was implemented. The results showed that wetting and drying cycles can significantly decrease more than 40-percent of peak strength, 60-percent of residual strength, and 50-percent of cohesion for VC substrate under ultimate conditions. The fundamental cause of reduction in mechanical performance was found to be the weakening of the bond between soil particles. And it was discovered that structural damage increased as the number of wetting and drying cycles increased but at a slower rate. Based on the tested results, linear functions between the loss extent parameters of mechanical performance and the structural damage variable were established for the VC substrate. Finally, the action mechanisms of wetting and drying cycles for VC substrate were discussed, and the main influential factors were proposed.


2021 ◽  
Vol 258 ◽  
pp. 107164
Author(s):  
Maite Martínez-Eixarch ◽  
Carles Alcaraz ◽  
Mercè Guàrdia ◽  
Mar Català-Forner ◽  
Andrea Bertomeu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document