scholarly journals A characterization of finite abelian groups via sets of lengths in transfer Krull monoids

2018 ◽  
Vol 46 (9) ◽  
pp. 4021-4041 ◽  
Author(s):  
Qinghai Zhong
Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


Author(s):  
Prasadini Mahapatra ◽  
Divya Singh

Scaling and generalized scaling sets determine wavelet sets and hence wavelets. In real case, wavelet sets were proved to be an important tool for the construction of MRA as well as non-MRA wavelets. However, any result related to scaling/generalized scaling sets is not available in case of locally compact abelian groups. This paper gives a characterization of scaling sets and its generalized version along with relevant examples in dual Cantor dyadic group [Formula: see text]. These results can further be generalized to arbitrary locally compact abelian groups.


2016 ◽  
Vol 58 ◽  
pp. 181-202 ◽  
Author(s):  
R. Balasubramanian ◽  
Gyan Prakash ◽  
D.S. Ramana

2017 ◽  
Vol 16 (10) ◽  
pp. 1750200 ◽  
Author(s):  
László Székelyhidi ◽  
Bettina Wilkens

In 2004, a counterexample was given for a 1965 result of R. J. Elliott claiming that discrete spectral synthesis holds on every Abelian group. Since then the investigation of discrete spectral analysis and synthesis has gained traction. Characterizations of the Abelian groups that possess spectral analysis and spectral synthesis, respectively, were published in 2005. A characterization of the varieties on discrete Abelian groups enjoying spectral synthesis is still missing. We present a ring theoretical approach to the issue. In particular, we provide a generalization of the Principal Ideal Theorem on discrete Abelian groups.


Sign in / Sign up

Export Citation Format

Share Document