On characterizations of w-coherent rings II

2021 ◽  
pp. 1-19
Author(s):  
Xiaolei Zhang ◽  
Fanggui Wang
Keyword(s):  
2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


2020 ◽  
Vol 12 (1) ◽  
pp. 107-114
Author(s):  
Rohit Nagpal ◽  
Andrew Snowden
Keyword(s):  

2012 ◽  
Vol 35 (3) ◽  
pp. 331-352 ◽  
Author(s):  
Lixin Mao
Keyword(s):  

2018 ◽  
Vol 28 (06) ◽  
pp. 959-977 ◽  
Author(s):  
Tiwei Zhao ◽  
Zenghui Gao ◽  
Zhaoyong Huang

Let [Formula: see text] be an integer. We introduce the notions of [Formula: see text]-FP-gr-injective and [Formula: see text]-gr-flat modules. Then we investigate the properties of these modules by using the properties of special finitely presented graded modules and obtain some equivalent characterizations of [Formula: see text]-gr-coherent rings in terms of [Formula: see text]-FP-gr-injective and [Formula: see text]-gr-flat modules. Moreover, we prove that the pairs (gr-[Formula: see text], gr-[Formula: see text]) and (gr-[Formula: see text], gr-[Formula: see text]) are duality pairs over left [Formula: see text]-coherent rings, where gr-[Formula: see text] and gr-[Formula: see text] denote the subcategories of [Formula: see text]-FP-gr-injective left [Formula: see text]-modules and [Formula: see text]-gr-flat right [Formula: see text]-modules respectively. As applications, we obtain that any graded left (respectively, right) [Formula: see text]-module admits an [Formula: see text]-FP-gr-injective (respectively, [Formula: see text]-gr-flat) cover and preenvelope.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050007
Author(s):  
Weiqing Li ◽  
Dong Liu

Let [Formula: see text] and [Formula: see text] be arbitrary fixed integers. We prove that there exists a ring [Formula: see text] such that: (1) [Formula: see text] is a right [Formula: see text]-ring; (2) [Formula: see text] is not a right [Formula: see text]-ring for each non-negative integer [Formula: see text]; (3) [Formula: see text] is not a right [Formula: see text]-ring [Formula: see text]for [Formula: see text], for each non-negative integer [Formula: see text]; (4) [Formula: see text] is a right [Formula: see text]-coherent ring; (5) [Formula: see text] is not a right [Formula: see text]-coherent ring. This shows the richness of right [Formula: see text]-rings and right [Formula: see text]-coherent rings, and, in particular, answers affirmatively a problem posed by Costa in [D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994) 3997–4011.] when the ring in question is non-commutative.


2018 ◽  
Vol 107 (02) ◽  
pp. 181-198
Author(s):  
JAMES GILLESPIE

We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$ -coherent rings introduced by Bravo–Perez. So a $0$ -coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$ -coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.


1993 ◽  
Vol 21 (10) ◽  
pp. 3521-3528 ◽  
Author(s):  
Jianlong Chen ◽  
Nanqing Ding

Sign in / Sign up

Export Citation Format

Share Document