gorenstein ring
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Matthew Mastroeni ◽  
Hal Schenck ◽  
Mike Stillman

Abstract Conca–Rossi–Valla [6] ask if every quadratic Gorenstein ring $R$ of regularity three is Koszul. In [15], we use idealization to answer their question, proving that in nine or more variables there exist quadratic Gorenstein rings of regularity three, which are not Koszul. In this paper, we study the analog of the Conca–Rossi–Valla question when the regularity of $R$ is four or more. Let $R$ be a quadratic Gorenstein ring having ${\operatorname {codim}} \ R = c$ and ${\operatorname {reg}} \ R = r \ge 4$. We prove that if $c = r+1$ then $R$ is always Koszul, and for every $c \geq r+2$, we construct quadratic Gorenstein rings that are not Koszul, answering questions of Matsuda [16] and Migliore–Nagel [19].


2020 ◽  
Vol 27 (03) ◽  
pp. 575-586
Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Holly Zolt

For a given class of modules [Formula: see text], let [Formula: see text] be the class of exact complexes having all cycles in [Formula: see text], and dw([Formula: see text]) the class of complexes with all components in [Formula: see text]. Denote by [Formula: see text][Formula: see text] the class of Gorenstein injective R-modules. We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic; every exact complex of Gorenstein injective modules is in [Formula: see text]; every complex in dw([Formula: see text][Formula: see text]) is dg-Gorenstein injective. The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings. If the ring is n-perfect for some integer n ≥ 0, the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules. We also prove the following characterization of Gorenstein rings. Let R be a commutative coherent ring; then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules; (2) every exact complex of flat modules is F-totally acyclic, and every R-module M such that M+ is Gorenstein flat is Ding injective; (3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective. If R has finite Krull dimension, statements (1)–(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).


2020 ◽  
pp. 1-18
Author(s):  
Naoki Endo ◽  
Shiro Goto ◽  
Ryotaro Isobe

Abstract The purpose of this paper is, as part of the stratification of Cohen–Macaulay rings, to investigate the question of when the fiber products are almost Gorenstein rings. We show that the fiber product $R \times _T S$ of Cohen–Macaulay local rings R, S of the same dimension $d>0$ over a regular local ring T with $\dim T=d-1$ is an almost Gorenstein ring if and only if so are R and S. In addition, the other generalizations of Gorenstein properties are also explored.


2020 ◽  
Vol 8 ◽  
Author(s):  
RAGNAR-OLAF BUCHWEITZ ◽  
OSAMU IYAMA ◽  
KOTA YAMAURA

In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting (respectively, silting) object for a $\mathbb{Z}$ -graded commutative Gorenstein ring $R=\bigoplus _{i\geqslant 0}R_{i}$ . Here $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)$ is the singularity category, and $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ is the stable category of $\mathbb{Z}$ -graded Cohen–Macaulay (CM) $R$ -modules, which are locally free at all nonmaximal prime ideals of $R$ . In this paper, we give a complete answer to this problem in the case where $\dim R=1$ and $R_{0}$ is a field. We prove that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ always admits a silting object, and that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting object if and only if either $R$ is regular or the $a$ -invariant of $R$ is nonnegative. Our silting/tilting object will be given explicitly. We also show that if $R$ is reduced and nonregular, then its $a$ -invariant is nonnegative and the above tilting object gives a full strong exceptional collection in $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R=\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}R$ .


2019 ◽  
Vol 2019 (756) ◽  
pp. 183-226 ◽  
Author(s):  
David Eisenbud ◽  
Bernd Ulrich

AbstractWe prove duality results for residual intersections that unify and complete results of van Straten, Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt.Suppose that I is an ideal of codimension g in a Gorenstein ring, and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s. Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K}.In the first part of the paper we prove, among other things, that under suitable hypotheses on I, the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dual to one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}}.In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant.


2019 ◽  
Vol 19 (08) ◽  
pp. 2050147
Author(s):  
Junpeng Wang ◽  
Zhenxing Di

Let [Formula: see text] be a ring (not necessarily commutative) and [Formula: see text] a bi-complete duality pair. We investigate the notions of (flat-typed) [Formula: see text]-Gorenstein rings, which unify Iwanaga–Gorenstein rings, Ding–Chen rings, AC-Gorenstein rings and Gorenstein [Formula: see text]-coherent rings. Using an abelian model category approach, we show that [Formula: see text] and [Formula: see text], the homotopy categories of all exact complexes of projective and injective [Formula: see text]-modules, are triangulated equivalent whenever [Formula: see text] is a flat-typed [Formula: see text]-Gorenstein ring.


2018 ◽  
Vol 107 (02) ◽  
pp. 181-198
Author(s):  
JAMES GILLESPIE

We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$ -coherent rings introduced by Bravo–Perez. So a $0$ -coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$ -coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.


2018 ◽  
Vol 17 (01) ◽  
pp. 1850001
Author(s):  
J. Asadollahi ◽  
R. Hafezi ◽  
M. H. Keshavarz

Let [Formula: see text] be a ring and [Formula: see text] be a finite quiver. We give an explicit formula for the injective envelopes and projective precovers in the category [Formula: see text] of bound representations of [Formula: see text] by left [Formula: see text]-modules, where [Formula: see text] is a combination of monomial and commutativity relations. Some applications will be provided. In particular, it is shown that if [Formula: see text] is acyclic and [Formula: see text] is an Iwanaga-Gorenstein ring, then so are these bound quiver algebras.


2017 ◽  
Vol 121 (2) ◽  
pp. 161
Author(s):  
Ensiyeh Amanzadeh ◽  
Mohammad T. Dibaei

Inspired by Jorgensen et al., it is proved that if a Cohen-Macaulay local ring $R$ with dualizing module admits a suitable chain of semidualizing $R$-modules of length $n$, then $R\cong Q/(I_1+\cdots +I_n)$ for some Gorenstein ring $Q$ and ideals $I_1,\dots , I_n$ of $Q$; and, for each $\Lambda \subseteq [n]$, the ring $Q/(\sum _{\ell \in \Lambda } I_\ell )$ has some interesting cohomological properties. This extends the result of Jorgensen et al., and also of Foxby and Reiten.


Sign in / Sign up

Export Citation Format

Share Document